Indice
Letteratura scientifica selezionata sul tema "McWilliams parameterization"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "McWilliams parameterization".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "McWilliams parameterization"
Gent, Peter R. "The Gent–McWilliams parameterization: 20/20 hindsight". Ocean Modelling 39, n. 1-2 (gennaio 2011): 2–9. http://dx.doi.org/10.1016/j.ocemod.2010.08.002.
Testo completoGrooms, Ian. "A Gaussian-product stochastic Gent–McWilliams parameterization". Ocean Modelling 106 (ottobre 2016): 27–43. http://dx.doi.org/10.1016/j.ocemod.2016.09.005.
Testo completoSmith, Richard D., e Peter R. Gent. "Anisotropic Gent–McWilliams Parameterization for Ocean Models". Journal of Physical Oceanography 34, n. 11 (1 novembre 2004): 2541–64. http://dx.doi.org/10.1175/jpo2613.1.
Testo completoCessi, Paola. "An Energy-Constrained Parameterization of Eddy Buoyancy Flux". Journal of Physical Oceanography 38, n. 8 (1 agosto 2008): 1807–19. http://dx.doi.org/10.1175/2007jpo3812.1.
Testo completoIvchenko, V. O., S. Danilov e J. Schröter. "Comparison of the Effect of Parameterized Eddy Fluxes of Thickness and Potential Vorticity". Journal of Physical Oceanography 44, n. 9 (1 settembre 2014): 2470–84. http://dx.doi.org/10.1175/jpo-d-13-0267.1.
Testo completoMarshall, David P., e Alberto C. Naveira Garabato. "A Conjecture on the Role of Bottom-Enhanced Diapycnal Mixing in the Parameterization of Geostrophic Eddies". Journal of Physical Oceanography 38, n. 7 (1 luglio 2008): 1607–13. http://dx.doi.org/10.1175/2007jpo3619.1.
Testo completoJansen, Malte F. "A note on: “A Gaussian-product stochastic Gent–McWilliams parameterization”". Ocean Modelling 110 (febbraio 2017): 49–51. http://dx.doi.org/10.1016/j.ocemod.2016.12.005.
Testo completoGrooms, Ian, e William Kleiber. "Diagnosing, modeling, and testing a multiplicative stochastic Gent-McWilliams parameterization". Ocean Modelling 133 (gennaio 2019): 1–10. http://dx.doi.org/10.1016/j.ocemod.2018.10.009.
Testo completoGent, Peter R., e Gokhan Danabasoglu. "Response to Increasing Southern Hemisphere Winds in CCSM4". Journal of Climate 24, n. 19 (ottobre 2011): 4992–98. http://dx.doi.org/10.1175/jcli-d-10-05011.1.
Testo completoFan, Yalin, e Stephen M. Griffies. "Impacts of Parameterized Langmuir Turbulence and Nonbreaking Wave Mixing in Global Climate Simulations". Journal of Climate 27, n. 12 (5 giugno 2014): 4752–75. http://dx.doi.org/10.1175/jcli-d-13-00583.1.
Testo completoTesi sul tema "McWilliams parameterization"
Adim, Mahieddine. "Modèles continûment stratifiés et systèmes multi-couches pour les écoulements géophysiques". Electronic Thesis or Diss., Université de Rennes (2023-....), 2024. http://www.theses.fr/2024URENS026.
Testo completoIn this thesis, we rigorously establish bridges between continuously stratified flows and multi-layer flows. In the first part, we consider the multi-layer shallow water system with an additional diffusive term that has a regularizing effect, motivated by the work of oceanographers Gent & McWilliams on isopycnal mixing and eddy diffusivity, which can be interpreted as a turbulence term. By exploiting the structure of this system, we derive a dictionary that allows us to interpret this multi-layer system as a discretization of the formulation in isopycnal coordinates of the continuously stratified hydrostatic system with the Gent & McWilliams diffusive term added in a similar manner. We demonstrate the convergence of the discrete solution to the continuous solution as the number of layers tends to infinity, and we provide an explicit convergence rate. In the second part of this thesis, we address the "inverse" limit. We rigorously show that, under certain hyperbolicity conditions and within a well-chosen topological framework, the solution of the continuously stratified system converges to the bi-layer shallow water system in the limit of sharp stratification