Tesi sul tema "Matériaux de Van der Waals"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 saggi (tesi di laurea o di dottorato) per l'attività di ricerca sul tema "Matériaux de Van der Waals".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi le tesi di molte aree scientifiche e compila una bibliografia corretta.
Henck, Hugo. "Hétérostructures de van der Waals à base de Nitrure". Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS319/document.
Testo completoThis thesis is at the interface between the study of nitride based compounds and the emerging structures formed by atomically thin bi-dimensional (2D) materials. This work consists in the study of the hybridization of the properties of large band gap materials from the nitride family and the mechanical, electronic and optical performances of layered materials, recently isolated at the monolayer level, highly considered due to their possible applications in electronics devices and fundamental research. In particular, a study of electronics and structural properties of stacked layered materials and 2D/3D interfaces have been realised with microscopic and spectroscopic means such as Raman, photoemission and absorption spectroscopy.This work is firstly focused on the structural and electronic properties of hexagonal boron nitride (h-BN), insulating layered material with exotic optical properties, essential in in the purpose of integrating these 2D materials with disclosed performances. Using graphene as an ideal substrate in order to enable the measure of insulating h-BN during photoemission experiments, a study of structural defects has been realized. Consequently, the first direct observation of multilayer h-BN band structure is presented in this manuscript. On the other hand, a different approach consisting on integrating bi-dimensional materials directly on functional bulk materials has been studied. This 2D/3D heterostructure composed of naturally N-doped molybdenum disulphide and intentionally P-doped gallium nitride using magnesium has been characterised. A charge transfer from GaN to MoS2 has been observed suggesting a fine-tuning of the electronic properties of such structure by the choice of materials.In this work present the full band alignment diagrams of the studied structure allowing a better understanding of these emerging systems
Abdukayumov, Khasan. "Conversion spin-charge dans les matériaux 2D et les hétérostructures de van der Waals". Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALY016.
Testo completoAfter the first-time successful exfoliation of graphene in 2004 many more 2D materials have been studied for various applications, including spintronics, a field that exploits the spin degree of freedom of electrons as opposed to the charge in electronics. The cornerstone of fundamental spintronics is the spin current-charge current interconversion phenomena, shortly known as spin-charge conversion (SCC). 2D materials are characterized by weak van der Waals (vdW) interaction between the layers, thus, relaxing the lattice-matching requirement for the epitaxy, enabling to grow complex vdW heterostructures. This can also offer new growth platforms not easily accessible by conventional 3D materials, and, due to the weak nature of the vdW forces, grown films can be transferred onto another substrate. Moreover, 2D materials show thickness dependent band structure and various heterostructures can be formed, opening up a vast number of possibly new physics for spintronic applications that can be explored. However, most of the current research is based on exfoliated flakes that are at most tens of µm in size, limiting their possible implementation for applications. In this thesis, I present large-area growth of high quality 2D materials and vdW heterostructures by molecular beam epitaxy (MBE) and study SCC effects by spintronic THz emission probed by THz time domain spectroscopy. First, CoFeB/PtSe2 heterostructures with varying the thickness of PtSe2 were studied and a transition from the inverse Rashba-Edelstein effect in a few monolayers (ML) to the inverse spin Hall effect in thicker films was observed. This is the first time a material showed such a transition. The second system was PtSe2/MoSe2 bilayer where we observed a hybridized electronic band showing an opposite spin texture to that of PtSe2. By this, we could demonstrate the possibility to reverse the sign of the inverse Rashba-Edelstein effect by inserting a single MoSe2 layer opening up a new route to modulate SCC intensity and sign in vdW heterostructures with monolayer control. Finally, SCC in few layer PtSe2/MoSe2 was investigated as a function of an external electric field either variable or remanent by proximity with a 3D ferroelectric material. Indeed, this vdW heterostructure is semiconducting with possibly larger SCC efficiency in electronic bands far from the Fermi level accessible through the application of an electric field. Those findings push us to explore the world of 2D materials even more by various means, such as electric fields, and bring 2D materials closer to spintronic device applications
Nayak, Goutham. "Amélioration des propriétés physiques de matériaux de basse-dimensionnalité par couplage dans des hétérostructures Van der Waals". Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAY084/document.
Testo completoThe extraordinary intrinsic properties of low dimensional materials depend highly on the environment they are subjected to. Hence they need to be prepared, processed and characterized without defects. In this thesis, I discuss about how to control the environment of low dimensional nanomaterials such as graphene, MoS2 and carbon nanotubes to preserve their intrinsic physical properties. Novel solutions for property enhancements are discussed in depth. In the first part, we fabricate state-of-the-art, edge-contacted, graphene Van der Waals(VdW) heterostructuredevices encapsulated in hexagonal-boron nitride(hBN), to obtain ballistic transport. We use a technique based on 1/f-noise measurements to probe bulk and edge transport during integer and fractional Quantum Hall regimes. In the second part, the same fabrication concept of VdW heterostructures has been extended to encapsulate monolayer MoS2 in hBN to improve optical properties. In this regard we present an extensive study about the origin and characterization of intrinsic and extrinsic defects and their affect on optical properties. Further, we describe a technique to probe the interlayer coupling along with the generation of light with spatialresolution below the diffraction limit of light. Finally, we discuss a natural systemic process to enhance the mechanical properties of natural polymer silk using HipCO-made single walled carbon nanotubes as a food for silkworm
Islam, Md Samiul. "Coherent ultrafast spectroscopy of excitons in Van der Waals materials". Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAE011.
Testo completoIn this thesis, based on an original development of ultrafast four wave mixing microscopy, the firstdirect measurement of excitonic coherence dynamics in rhenium disulfide was obtained. Theseresults demonstrated a unique robustness of excitonic coherence compared to other Transition metal dichalcogenide (TMD) materials. The potential for controlling the intrinsic properties of excitons in van der Waals (vdW) materials was explored in innovative two-dimensional assemblies. In particular, the impact of graphene in the excitonic environment of a heterostructure on the dynamic properties of these excitons has been investigated. Finally, a significant step towards understanding and engineering the optical properties of single photon emitting defects in hBN has been achieved
Lorchat, Étienne. "Optical spectroscopy of heterostructures based on atomically-thin semiconductors". Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAE035.
Testo completoDuring this thesis, we have fabricated and studied by optical spectroscopy, van der Waals heterostructures composed of semiconductor monolayers (transition metal dichalcogenides, TMD) coupled to a graphene monolayer or to a plasmonic resonator. We have observed significant changes in the dynamics of the TMD optically excited states (excitons) when it is in direct contact with graphene. Graphene neutralizes the TMD monolayer and enables non-radiative transfer of excitons within less than a few picoseconds. This energy transfer process may be accompanied by a considerably less efficient, extrinsic photodoping. The reduced lifetime of TMD excitons in the presence of graphene has been exploited to show that their valley pseudo-spin maintains a high degree of polarization and coherence up to room temperature. Finally, by strongly coupling TMD excitons to the modes of a geometric phase plasmonic resonator, we have demonstrated, at room temperature, that the momentum of the resulting chiral polaritons (chiralitons) is locked to their valley pseudo-spin
Di, Felice Daniela. "Electronic structure and transport in the graphene/MoS₂ heterostructure for the conception of a field effect transistor". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS267/document.
Testo completoThe isolation of graphene, a single stable layer of graphite, composed by a plane of carbon atoms, demonstrated the possibility to separate a single layer of atomic thickness, called bidimensional (2D) material, from the van der Waals (vdW) solids. Thanks to their stability, 2D materials can be used to form vdW heterostructures, a vertical stack of different 2D crystals maintained together by the vdW forces. In principle, due to the weakness of the vdW interaction, each layer keeps its own global electronic properties. Using a theoretical and computational approach based on the Density Functional Theory (DFT) and Keldish-Green formalism, we have studied graphene/MoS₂ heterostructure. In this work, we are interested in the specific electronic properties of graphene and MoS₂ for the conception of field effect transistor: the high mobility of graphene as a basis for high performance transistor and the gap of MoS₂ able to switch the device. First, the graphene/MoS₂ interface is electronically characterized by analyzing the effects of different orientations between the layers on the electronic properties. We demonstrated that the global electronic properties as bandstructure and Density of State (DOS) are not affected by the orientation, whereas, by mean of Scanning Tunneling Microscope (STM) images, we found that different orientations leads to different local DOS. In the second part, graphene/MoS₂ is used as a very simple and efficient model for Field Effect Transistor. The role of the vdW heterostructure in the transistor operation is analyzed by stacking additional and alternate graphene and MoS₂ layers on the simple graphene/MoS₂ interface. We demonstrated that the shape of the DOS at the gap band edge is the fundamental parameter in the switch velocity of the transistor, whereas the additional layers do not improve the transistor behavior, because of the independence of the interfaces in the vdW heterostructures. However, this demonstrates the possibility to study, in the framework of DFT, the transport properties of more complex vdW heterostructures, separating the single interfaces and reducing drastically the calculation time. The 2D materials are also studied in the role of a tip for STM and Atomic Force Microscopy (AFM). A graphene-like tip, tested on defected MoS₂, is compared with a standard copper tip, and it is found to provide atomic resolution in STM images. In addition, due to vdW interaction with the sample, this tip avoids the contact effect responsible for the transfer of atoms between the tip and the sample. Furthermore, the analysis of defects can be very useful since they induce new peaks in the gap of MoS₂: hence, they can be used to get a peak of current representing an interesting perspective to improve the transistor operation
Vergnaud, Céline. "Optimisation de la croissance de MoSe2 - WSe2 par épitaxie de Van der Waals pour la valleytronique". Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALY038.
Testo completoThe purpose of this thesis is to optimize growth by molecular beam epitaxy in the van der Waals regime of two-dimensional (2D) semiconductor layers of transition metal diselenides (MoSe2, WSe2) for magneto-optical and electric studies. This optimization involves improving the crystallographic quality of the layers over large areas by adjusting the growth parameters (temperature and flux). In particular, the control of the surface state of the substrate is decisive on the growth mechanisms of these layers. The development of these low-dimensional materials required the use of advanced characterization techniques (Grazing incidence X-ray diffraction, High Resolved Transmission Electronic Microscopy, ect). In this thesis, we focused on two specific substrates : silicon oxide and mica. They both have the particularity of being insulating and inert from an electronic point of view, which is essential to probe the optical and electrical intrinsic properties of 2D layers. Finally, we developed electrical doping (p doping) for microelectronics and magnetic (Mn doping) for valleytronics
Touhari, Françoise. "Etude de l'interaction de Van der Waals en microscopie à force atomique. Simulation numérique d'images de nanostructures et effet de la nature chimique des matériaux". Montpellier 2, 1998. http://www.theses.fr/1998MON20060.
Testo completoWang, Hangtian. "Interfacial Engineering of the Magnetism in 2D Magnets, Topological Insulators, and Their Heterostructures". Electronic Thesis or Diss., Université de Lorraine, 2023. http://www.theses.fr/2023LORR0206.
Testo completoWith the critical node of integrated circuits (IC) entering the 1 nm stage, traditional three-dimensional materials cannot maintain their original physical properties, and thus cannot meet the needs of IC manufacturing processes. Meanwhile, the shrinking line width also introduces an inevitable increase in static power consumption. Therefore, researching new materials and new technologies to break through the "Size Wall" and "Power Wall" has become a crucial direction in the IC industry. As a new member of the two-dimensional (2D) material family, the 2D magnets can maintain its long-range magnetic order at the atomic scale with its physical properties easily controlled by external stimuli, which provides an ideal platform for the high-density and low-power spintronic devices. However, due to the dimensional effect, 2D magnetism cannot exist at high temperatures. Although several methods can enhance the Curie temperature (Tc) of 2D magnets (such as doping, ion intercalation, or laser pumping), they are far from easy-controllability and high-efficiency. More importantly, the widely-used preparation method via mechanical exfoliation abandons the merit of 2D interfacial effect, which was proved to be an important approach to efficient 2D magnetic manipulation. Therefore, studying the interfacial effect in epitaxial 2D magnets is regarded as a key field to achieving large-scale, high-Tc, easy-controlling, and stable 2D ferromagnetic order. Topological insulator (TI) is another 2D material with strong spin-orbital coupling. The topology-protected surface states provided TI with numerous fascinates spin-related effects, such as spin-momentum locking, spin exchange effect, etc., which makes this material a potential candidate to fabricate effective spintronic devices. In addition, the TI can be integrated with 2D magnets to form a 2D heterostructure, in which not only the magnetism can be enhanced via the interfacial effect, but also the spin-related properties of the heterostructure can be manipulated due to the advantages of these two materials
Ben, Jabra Zouhour. "Study of new heterostructures : silicene on graphene". Electronic Thesis or Diss., Aix-Marseille, 2021. http://www.theses.fr/2021AIXM0583.
Testo completoThe topic of this thesis deals with the study of the growth and properties of silicene (Si-ene) on graphene (Gr) on 6H-SiC(0001) with the final goal of forming free-standing (FS) Si-ene on an insulating or semiconductor substrate. I have described the substrate as a function of the CVD processing conditions. When the proportion of H2 is low it is possible to obtain homogeneous Gr on buffer layer (BL) on SiC. The STM and LEED show the superposition of the Gr mesh and the BL reconstruction representative of the epitaxial Gr. When the proportion of H2 is high, the resulting Gr layer is fully hydrogenated. This is a new result as no hydrogen intercalation process has been able to fully hydrogenate (6x6)Gr samples epitaxial on BL until now. For intermediate proportions of H2/Ar, the coexistence of (6x6)Gr and H-Gr is observed. Depending on the proportion of H2 in the gas mixture, either the SiC surface remains passivated during the entire Gr growth and H-Gr is obtained, or the H2 partially or totally desorbs and either both structures coexist or full plate (6x6)Gr is obtained. I have studied the MBE growth of Si-ene on (6x6)Gr. I have shown that it is possible to form Si-ene puddles for deposit thicknesses <0.5MC. We observe the presence of flat areas of 0.2-0.3nm thickness corresponding to a Si-ene monolayer, surrounded by 3D dendritic islands of Si. The Raman spectra show a peak up to 563cm-1 which is the closest value to Si-ene FS ever obtained. This demonstrates the formation of quasi-FS Si-ene. This work contributes to a better understanding of the CVD growth mechanism of Gr and to the advancement of research in the field of epitaxial growth of 2D materials
Marcon, Paul. "Calcul ab-initio des propriétés physiques d'hétérostructures associant des matériaux ferromagnétiques à anisotropie magnétique perpendiculaire et des dichalcogénures de métaux de transition". Electronic Thesis or Diss., Toulouse 3, 2023. http://www.theses.fr/2023TOU30273.
Testo completoThe ability to synthesize heterostructures made up of 2D materials provides significant opportunities for improving current spintronic components or developing new devices. Thus, the control and deep understanding of the physical properties of these systems become a critical technological challenge. During this thesis, we examined heterostructures composed of transition metal dichalcogenide (TMDC) monolayers and ferromagnetic crystals exhibiting perpendicular magnetic anisotropy, using ab initio calculations based on density functional theory (DFT). We focus on three main goals: (i) understanding how to use magnetic proximity to lift valley degeneracy and quantify the valley Zeeman effect; (ii) assessing the possibility of injecting spin-polarized electron gas into specific valleys of the TMDC sheet; (iii) investigating the impact of proximity on spin-orbit coupling in the TMDC sheet and on the Rashba and Dresselhaus phenomena in these systems. We first studied multilayers with an electrode made up of a metal and a non-2D insulating barrier. In the Fe/MgO/MoS2 system, we computed that a spontaneous electron transfer occurs from the Fe layer to the MoS2 monolayer, leading to the formation of a non-spin-polarized electron gas. We established a model explaining the competition between Rashba and Dresselhaus-type spin-orbit effects and magnetic proximity effect on the MoS2 valence bands: This model allowed us to show that proximity effect predominate for thin MgO (<0.42 nm) and tend to disappear in favor of spin-orbit effects for thicker layers (> 1.06 nm). We predicted that stronger spin-orbit effects can be achieved by replacing the Fe electrode with a non-magnetic V electrode. To boost the magnetic proximity effects, we finally decided to study [Co1Ni2]n/h-BN/WSe2 heterostructures, in which [Co1Ni2]n is a superlattice with perpendicular magnetic anisotropy, and h-BN is a two-dimensional insulator. For this system, we predict that it could be possible to have a spin polarization of the valleys at the K and K' points. Ultimately, we explored the unique properties of the van der Waals heterostructure Graphene/CrI3/WSe2, where the magnetic electrode is also replaced by 2D materials
Sant, Roberto. "Exploration par rayonnement synchrotron X de la croissance et de la structure de dichalcogénures 2D". Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAY075.
Testo completoTwo-dimensional transition metal dichalcogenides (TMDCs) are promising materials for a variety of applications, especially in optoelectronics. However, the lack of understanding of their epitaxy - i.e. growth mechanism, microscopic structure, nature of the 2D layer-substrate interaction, etc. - is still a crucial issue to address. In this PhD thesis we explored a series of epitaxial growths of monolayer and thin film TMDCs grown by molecular beam epitaxy (MBE) on a variety of substrates. We studied their atomic structures and we attempted the modifications of some of them with various in situ methods. Several systems and processes have been investigated: (i) transition metal ditellurides, ZrTe2 , MoTe2 and TiTe2 on InAs(111) substrate, (ii) the intercalation of alkali metal species between single layer MoS2 and its Au(111) substrate, (iii) the growth and the thermal treatments in H2S atmosphere of monolayer PtSe2 on Pt(111). Our work relies on both phenomenological and quantitative methods based on surface X-ray diffraction, often complemented by parallel analysis performed with other probes, e.g. STM, TEM, XPS, ARPES. Most notably, we found that: (i) a metastable orthorhombic phase and a charge density wave phase can be stabilized at room temperature in MoTe2 and TiTe2 owing to the epitaxial strain in the materials; (ii) the intercalation of Cs atoms under MoS2 induces structural and electronic decoupling of the 2D MoS2 layer from its Au(111) substrate; (iii) the sulfurization of PtSe2 promotes the Se-by-S substitution in one (or both) of its two chalcogen layers, leading either to the full conversion of the selenide into a sulfide or even to an ordered Janus alloy
Rocha, Alberto Sperotto dos Santos. "Um modelo de sacola difusa para a matéria nuclear". reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2004. http://hdl.handle.net/10183/6706.
Testo completoChevereau, Élodie. "Synthèse et caractérisation physico-chimique d'un matériau membranaire à structure contrôlée : étude expérimentale de la sélectivité". Lorient, 2011. http://www.theses.fr/2011LORIS249.
Testo completoThe aim of this work was to synthesize mordenite membrane for an application in nanofiltration or in low cut-off ultrafiltration and to understand the transport mechanisms governing the retention of monovalent and divalent ions through a controlled structure mineral membrane. The approach what has been implemented has led us, at first, to ascertain the nature of synthesized products and identify their surface, morphological and electrical properties. We chose to determine the specific parameters of the synthesized mordenite (such as pore radius, surface area and surface charge) from the powders used to prepare the related membrane. In addition to these physical and chemical characterizations, filtration tests were carried out on pilot unit in order to study the mordenite membrane selectivity toward monovalent and divalent salt-water solution. For this, an experimental protocol was defined. We managed to observe the retention of small monovalent ions after changing the surface properties of mordenite. The preferential transport and the specific retention of mono- and divalent ions were also observed under certain operating conditions. Thus, the results obtained during the filtration tests in single and mixed solutions led us to make several hypotheses about solute-membrane interactions: the membrane behaves as a surface whose the polarity can be changed after an alkaline treatment, the polarizability of hydrated ions decreases with their enthalpies of hydration, the interaction between the treated surface and theses ions depend on the Van der Waals forces
Mahmoudi, Aymen. "Propriétés électroniques des dichalcogénures bi-dimensionnels de métaux de transition". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP106.
Testo completoThe subject of this thesis is two-dimensional (2D) materials of atomic thickness. The study of the optical and electronic properties of hybrid heterostructures based on MX₂ transition metal dichalcogenides (TMDs) (M = Mo, W; X = S, Se, Te) is now being carefully considered with a view to future applications and more fundamental studies. Beyond their intrinsic physical properties, in multilayer configurations, these materials offer promising physical phenomena such as modulation of bandgap values, ferroelectricity for specific crystal configurations, and so on. In particular, this work focuses on hybrid heterostructures based on tungsten diselenide (WSe₂) on graphene and gallium phosphate (GaP) substrates. Using microscopy and spectroscopy techniques such as Raman spectroscopy and angle-resolved photoemission spectroscopy (ARPES), we investigated the electronic, optical, and structural properties of heterostructures composed of several 2D materials to better understand these emerging systems. Accordingly, the first direct measurements of the electronic band structure of the rhombohedral phase of the WSe₂ bilayer structure deposited on a 2D graphene substrate are presented in this manuscript. The direct growth of this 2D material on a 3D GaP substrate has been studied for several thicknesses. This work has enabled us to identify the effect of the nature of the crystalline phase and the growth method on the electronic band structures, providing a better understanding of these emerging systems
Bezzi, Luca. "Materiali 2D van der Waals". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Cerca il testo completoBoddison-Chouinard, Justin. "Fabricating van der Waals Heterostructures". Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/38511.
Testo completoTiller, Andrew R. "Spectra of Van der Waals complexes". Thesis, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333415.
Testo completoMauro, Diego. "Electronic properties of Van der Waals heterostructures". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/10565/.
Testo completoKlein, Andreas. "Energietransferprozesse in matrixisolierten van-der-Waals-Komplexen". [S.l. : s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=962344761.
Testo completoOdeyemi, Tinuade A. "Numerical Modelling of van der Waals Fluids". Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/22661.
Testo completoMarsden, Alexander J. "Van der Waals epitaxy in graphene heterostructures". Thesis, University of Warwick, 2015. http://wrap.warwick.ac.uk/77193/.
Testo completoConnelly, James Patrick. "Microwave studies of Van der Waals complexes". Thesis, University of Oxford, 1993. http://ora.ox.ac.uk/objects/uuid:3865eb1d-d288-44c9-8d42-84f7ff2c0608.
Testo completoWright, Nicholas J. "Bound states of Van der Waals trimers". Thesis, Durham University, 1998. http://etheses.dur.ac.uk/5048/.
Testo completoBryan, Robert. "Theoretical studies of Van der Waals clusters". Thesis, Durham University, 1997. http://etheses.dur.ac.uk/4712/.
Testo completoTulegenov, Akyl S. "SIMPER method for van der Waals complexes". Thesis, University of Nottingham, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.431329.
Testo completoMcDowell, Sean Alistair Courtney. "Theoretical studies of Van der Waals molecules". Thesis, University of Cambridge, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259733.
Testo completoLe, Sueur Catherine Ruth. "Induction effects in Van der Waals complexes". Thesis, University of Cambridge, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.385523.
Testo completoWillberg, Dean Michael Zewail Ahmed H. "Picosecond spectroscopy of van der Waals clusters /". Diss., Pasadena, Calif. : California Institute of Technology, 1994. http://resolver.caltech.edu/CaltechETD:etd-04042008-110156.
Testo completoColumberg, Gieri. "Mikrowellen-Spektroskopie T-förmiger Van der Waals Komplexe /". [S.l.] : [s.n.], 1996. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=11636.
Testo completoCoy, Diaz Horacio. "Preparation and Characterization of Van der Waals Heterostructures". Scholar Commons, 2016. http://scholarcommons.usf.edu/etd/6212.
Testo completoLawrence, Stuart John. "High-resolution spectroscopy of van der Waals molecules". Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318824.
Testo completoKettley, J. C. "Van der Waals complexes of large aromatic molecules". Thesis, University of Nottingham, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.371128.
Testo completoAlthorpe, Stuart C. "Bound state calculations for van der Waals dimers". Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.319937.
Testo completoMa, Qiong Ph D. Massachusetts Institute of Technology. "Optoelectronics of graphene-based Van der Waals heterostructures". Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/104523.
Testo completoCataloged from PDF version of thesis.
Includes bibliographical references.
Research on van der Waals (vdW) materials (homo- or hetero-) is a rapidly emerging field in condensed matter physics. They are layered structures with strong chemical bonding within layers and relatively weak van der Waals force to combine layers together. This unique layer-bylayer nature makes it easy to exfoliate layers out and at the same time to re-assemble in arbitrary sequences with different combinations. The versatility, flexibility, and relatively low cost of production make the scientific community enthusiastic about their future. In this thesis, I investigate the fundamental physical processes of light-matter interactions in these layered structures, including graphene, boron nitride, transition metal dichalcogenides and heterostructures formed from these materials. My research involves state-of-the-art nanoscale fabrication and microscale photocurrent spectroscopy and imaging. In Chapter 1, 1 will briefly discuss basic physical properties of the vdW materials involved in this thesis and introduce the main nanofabrication and measurement techniques. Chapter 2-4 are about hot electron dynamics and electron-phonon coupling in intrinsic graphene systems, among which Chapter 2 is focusing on the generation mechanism of the photocurrent at the p-n interface, which is demonstrated to have a photothermoelectric origin. This indicates a weak electron-phonon coupling strength in graphene. Chapter 3 is a direct experimental follow-up of the work in Chapter 2 and reveals the dominant electron-phonon coupling mechanism at different temperature and doping regimes. In Chapter 4, I present the observation of anomalous geometric photocurrent patterns in various devices at the charge neutral point. The spatial pattern can be understood as a local photo-generated current near edges being collected by remote electrodes. The anomalous behavior as functions of change density and temperature indicates an interesting regime of energy and charge dynamics. In Chapter 5 and 6, 1 will show the photoresponse of graphene-BN heterostuctures. In graphene-BN stack directly on SiO₂, we observed strong photo-induced doping phenomenon, which can be understood as charge transfer from graphene across BN and eventually trapped at the interface between BN and SiO₂. By inserting another layer of graphene between BN and SiO₂ , we can measure an electrical current after photoexcitation due to such charge transfer. We further studied the competition between this vertical charge transfer and in-plane carrier-carrier scattering in different regimes. In Chapter 7, I will briefly summarize collaborated work with Prof. Dimitri Basov's group on near-field imaging of surface polariton in two-dimensional materials. This technique provides a complementary tool to examine the intriguing light-matter interaction (for large momentum excitations) in low-dimensional materials. Chapter 8 is the outlook, from my own point of view, what more can be done following this thesis.
by Qiong Ma.
Ph. D.
Waage, Magnus Heskestad. "Radiative corrections to van der Waals interaction in fluids". Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for fysikk, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-18872.
Testo completoDelRio, Frank William. "Van der Waals and capillary adhesion in microelectromechanical systems". Diss., Connect to online resource, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3239374.
Testo completoPeet, Andrew Charles. "Vibrational predissociation of Van der Waals complexes containing ethylene". Thesis, University of Cambridge, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329168.
Testo completoHowson, Joanna M. M. "Obtaining potential energy surfaces of Van der Waals molecules". Thesis, Durham University, 1999. http://etheses.dur.ac.uk/4488/.
Testo completoSanz-Garcia, Aranzazu. "Modelling the dispersion energy for Van der Waals complexes". Thesis, University of Nottingham, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.252013.
Testo completoMusgrave, Adam. "Electronic spectroscopy of Van der Waals clusters and complexes". Thesis, University of Nottingham, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.445684.
Testo completoKhestanova, Ekaterina. "Van der Waals heterostructures : fabrication, mechanical and electronic properties". Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/van-der-waals-heterostructures-fabrication-mechanical-and-electronic-properties(047ce24b-7a58-4192-845d-54c7506f179f).html.
Testo completoSchofield, Robert Christopher. "Raman studies of 2-dimensional van der Waals materials". Thesis, University of Sheffield, 2018. http://etheses.whiterose.ac.uk/21313/.
Testo completoDavid, Lamuel Abraham. "Van der Waals sheets for rechargeable metal-ion batteries". Diss., Kansas State University, 2015. http://hdl.handle.net/2097/32796.
Testo completoDepartment of Mechanical and Nuclear Engineering
Gurpreet Singh
The inevitable depletion of fossil fuels and related environmental issues has led to exploration of alternative energy sources and storage technologies. Among various energy storage technologies, rechargeable metal-ion batteries (MIB) are at the forefront. One dominant factor affecting the performance of MIB is the choice of electrode material. This thesis reports synthesis of paper like electrodes composed for three representative layered materials (van der Waals sheets) namely reduced graphene oxide (rGO), molybdenum disulfide (MoS₂) and hexagonal boron nitride (BN) and their use as a flexible negative electrode for Li and Na-ion batteries. Additionally, layered or sandwiched structures of vdW sheets with precursor-derived ceramics (PDCs) were explored as high C-rate electrode materials. Electrochemical performance of rGO paper electrodes depended upon its reduction temperature, with maximum Li charge capacity of 325 mAh.g⁻¹ observed for specimen annealed at 900°C. However, a sharp decline in Na charge capacity was noted for rGO annealed above 500 °C. More importantly, annealing of GO in NH₃ at 500 °C showed negligible cyclability for Na-ions while there was improvement in electrode's Li-ion cycling performance. This is due to increased level of ordering in graphene sheets and decreased interlayer spacing with increasing annealing temperatures in Ar or reduction at moderate temperatures in NH₃. Further enhancement in rGO electrodes was achieved by interfacing exfoliated MoS₂ with rGO in 8:2 wt. ratios. Such papers showed good Na cycling ability with charge capacity of approx. 225.mAh.g⁻¹ and coulombic efficiency reaching 99%. Composite paper electrode of rGO and silicon oxycarbide SiOC (a type of PDC) was tested as high power-high energy anode material. Owing to this unique structure, the SiOC/rGO composite electrode exhibited stable Li-ion charge capacity of 543.mAh.g⁻¹ at 2400 mA.g⁻¹ with nearly 100% average cycling efficiency. Further, mechanical characterization of composite papers revealed difference in fracture mechanism between rGO and 60SiOC composite freestanding paper. This work demonstrates the first high power density silicon based PDC/rGO composite with high cyclic stability. Composite paper electrodes of exfoliated MoS₂ sheets and silicon carbonitride (another type of PDC material) were prepared by chemical interfacing of MoS₂ with polysilazane followed by pyrolysis . Microscopic and spectroscopic techniques confirmed ceramization of polymer to ceramic phase on surfaces on MoS₂. The electrode showed classical three-phase behavior characteristics of a conversion reaction. Excellent C-rate performance and Li capacity of 530 mAh.g⁻¹ which is approximately 3 times higher than bulk MoS₂ was observed. Composite papers of BN sheets with SiCN (SiCN/BN) showed improved electrical conductivity, high-temperature oxidation resistance (at 1000 °C), and high electrochemical activity (~517 mAh g⁻¹ at 100 mA g⁻¹) toward Li-ions generally not observed in SiCN or B-doped SiCN. Chemical characterization of the composite suggests increased free-carbon content in the SiCN phase, which may have exceeded the percolation limit, leading to the improved conductivity and Li-reversible capacity. The novel approach to synthesis of van der Waals sheets and its PDC composites along with battery cyclic performance testing offers a starting point to further explore the cyclic performance of other van der Waals sheets functionalized with various other PDC chemistries.
Gée, Christelle. "Reactions chimiques isolees sur agregats de van der waals". Paris 11, 1997. http://www.theses.fr/1997PA112092.
Testo completoYu, Geliang. "Transport properties of graphene based van der Waals heterostructures". Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/transport-properties-of-graphene-based-van-der-waals-heterostructures(5cbb782f-4d49-42da-a05e-15b26606e263).html.
Testo completoGani, Yohanes Satrio. "Electronic Properties of Two-Dimensional Van Der Waals Systems". W&M ScholarWorks, 2019. https://scholarworks.wm.edu/etd/1563899012.
Testo completoTomarken, Spencer Louis. "Thermodynamic and tunneling measurements of van der Waals heterostructures". Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/123567.
Testo completoCataloged from PDF version of thesis.
Includes bibliographical references (pages 201-212).
In certain electronic systems, strong Coulomb interactions between electrons can favor novel electronic phases that are difficult to anticipate theoretically. Accessing fundamental quantities such as the density of states in these platforms is crucial to their analysis. In this thesis, I explore the application of two measurement techniques towards this goal: capacitance measurements that probe the thermodynamic ground state of an electronic system and planar tunneling measurements that access its quasiparticle excitation spectrum. Both techniques were applied to van der Waals materials, a class of crystals composed of layered atomic sheets with weak interplane bonding which permits the isolation of single and few-layer sheets that can be manually assembled into heterostructures. Capacitance measurements were performed on a material system commonly known as magic-angle twisted bilayer graphene (MATBG).
When two monolayers of graphene, a single sheet of graphite, are stacked on top of one another with a relative twist between their crystal axes, the resultant band structure is substantially modified from the cases of both monolayer graphene and Bernal-stacked (non-twisted) bilayer graphene. At certain magic angles, the low energy bands become extremely flat, quenching the electronic kinetic energy and allowing strong electron-electron interactions to become relevant. Exotic insulating and superconducting phases have been observed using conventional transport measurements. By accessing the thermodynamic density of states of MATBG, we estimate its low energy bandwidth, Fermi velocity, and interaction-driven energy gaps. Time-domain planar tunneling was performed on a heterostructure that consisted of monolayer graphene and hexagonal boron nitride (serving as the dielectric and tunnel barrier) sandwiched between a graphite tunneling probe and metal gate.
Tunneling currents were induced by applying a sudden voltage pulse across the full parallel plate structure. The lack of in-plane charge motion allowed access to the tunneling density of states even when the heterostructure was electrically insulating in the quantum Hall regime. These measurements represent the first application of time-domain planar tunneling to the van der Waals class of materials, an important step in extending the technique to new material platforms.
by Spencer Louis Tomarken.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Physics
Scheele, Iris. "Hochauflösende Infrarot-Spektroskopie an schwach gebundenen Van-der-Waals-Systemen". [S.l.] : [s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=963558668.
Testo completoQuayle, Christopher John Kendrick. "Alignment effects in the photodissociation of van der Waals molecules". Thesis, University of Oxford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.357431.
Testo completo