Letteratura scientifica selezionata sul tema "Materials"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Materials".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Materials"
AA VV, AA VV. "Dental materials/Materiali dentari". Dental Cadmos 01, n. 01 (luglio 2022): 135. http://dx.doi.org/10.19256/abstract.cduo.08.2022.
Testo completoAA VV, AA VV. "Dental materials/Materiali dentari". Dental Cadmos 01, n. 01 (settembre 2023): 155. http://dx.doi.org/10.19256/abstract.cduo.08.2023.
Testo completoKishimoto, Satoshi, e Norio Shinya. "Fabrication of Metallic Closed Cellular Materials for Multi-functional Materials(International Workshop on Smart Materials and Structural Systems, W03 Jointly organized by Material & Processing Division, Material & Mechanics Division, Dynamics & Control Division and Space Engineering Division.)". Reference Collection of Annual Meeting 2004.8 (2004): 314–15. http://dx.doi.org/10.1299/jsmemecjsm.2004.8.0_314.
Testo completoPaton, B. E., e V. I. Trefilov. "Proposals for the ISS: Production of new unique materials in space («Material» Project)". Kosmìčna nauka ì tehnologìâ 6, n. 4 (30 luglio 2000): 20–21. http://dx.doi.org/10.15407/knit2000.04.020.
Testo completoNishi, Yosihtake. "2004 Research for Intelligent Materials & System(International Workshop on Smart Materials and Structural Systems, W03 Jointly organized by Material & Processing Division, Material & Mechanics Division, Dynamics & Control Division and Space Engineering Division.)". Reference Collection of Annual Meeting 2004.8 (2004): 312–13. http://dx.doi.org/10.1299/jsmemecjsm.2004.8.0_312.
Testo completoLee, In. "Application of Smart Materials to Improve the Structural Performance(International Workshop on Smart Materials and Structural Systems, W03 Jointly organized by Material & Processing Division, Material & Mechanics Division, Dynamics & Control Division and Space Engineering Division.)". Reference Collection of Annual Meeting 2004.8 (2004): 272–73. http://dx.doi.org/10.1299/jsmemecjsm.2004.8.0_272.
Testo completoGORCZYCA, GRZEGORZ. "BIOPOLYMERS IN DESIGNING MODERN ANTIMICROBIAL MEDICAL MATERIALS. Part I. BIOPOLYMER MEDICAL MATERIALS — COLLAGEN, CHITOSAN". Polimery 56, n. 10 (ottobre 2011): 709–15. http://dx.doi.org/10.14314/polimery.2011.709.
Testo completoPereira, Fábio Rocha, Érika Cristina Nogueira Marques Pinheiro e Reginaldo Beserra Alves. "Materiais de construção alternativos / Alternative construction materials". Brazilian Journal of Development 7, n. 11 (30 novembre 2021): 109965–81. http://dx.doi.org/10.34117/bjdv7n11-564.
Testo completoZanotto, Edgar Dutra. "Materials Research: Revista Ibero-americana de Materiais". Materials Research 4, n. 4 (ottobre 2001): 229. http://dx.doi.org/10.1590/s1516-14392001000400001.
Testo completoFuruya, Yasubumi, e T. Okazaki. "Recent Progress of Rapid-Solidified Multi-Functional Actuator/Sensor Materials and Devices for Smart Man/Material Interface and Systems(International Workshop on Smart Materials and Structural Systems, W03 Jointly organized by Material & Processing Division, Material & Mechanics Division, Dynamics & Control Division and Space Engineering Division.)". Reference Collection of Annual Meeting 2004.8 (2004): 294–95. http://dx.doi.org/10.1299/jsmemecjsm.2004.8.0_294.
Testo completoTesi sul tema "Materials"
Sobrosa, Fabiano Zanini. "Desenvolvimento de materiais cerâmicos refratários com adição da sílica residual proveniente da queima da casca de arroz". Universidade Federal do Pampa, 2014. http://dspace.unipampa.edu.br:8080/xmlui/handle/riu/767.
Testo completoApproved for entry into archive by Cátia Araújo (catia.araujo@unipampa.edu.br) on 2017-01-25T12:37:45Z (GMT) No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Desenvolvimento de materiais cerâmicos refratários com adição da sílica residual proveniente da queima da casca de arroz.pdf: 10705111 bytes, checksum: f3dc853aa0f1b672236697852c098384 (MD5)
Made available in DSpace on 2017-01-25T12:37:45Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Desenvolvimento de materiais cerâmicos refratários com adição da sílica residual proveniente da queima da casca de arroz.pdf: 10705111 bytes, checksum: f3dc853aa0f1b672236697852c098384 (MD5) Previous issue date: 2014-03-20
Com a intenção de agregar valor à cinza da casca de arroz, subproduto da indústria orizícola, e colaborar para um desenvolvimento sustentável do país, esta pesquisa buscou desenvolver materiais cerâmicos refratários com a substituição parcial da argila pela sílica de casca de arroz (SCA) produzida a partir da geração de energia elétrica. Atualmente, na região da fronteira oeste do Estado do Rio Grande do Sul, existem várias usinas termoelétricas de biomassa para geração de energia elétrica através da queima da casca de arroz. Essa tecnologia vem ao encontro da necessidade de diversificação da matriz energética no país. A indústria orizícola produz no Brasil aproximadamente 12 milhões de toneladas por ano de arroz, e aproximadamente 2,5 milhões de toneladas por ano são convertidos em casca. Caso toda esta casca fosse queimada, gerar-se-iam aproximadamente 500 mil toneladas de cinza, a qual é rica em sílica. Portanto, viabilizar seu aproveitamento tende a reduzir o passivo ambiental, além dos benefícios econômicos. No presente trabalho foi analisado o efeito da substituição parcial da argila refratária por sílica da casca de arroz (SCA) nas propriedades mecânicas e termomecânicas dos materiais cerâmicos refratários produzidos, em percentuais de 5, 10 e 20%. Foram analisadas as propriedades mecânicas desses materiais através de ensaios de resistência à compressão, tração direta, flexão em três pontos e dureza superficial Vickers. Analisaram-se também a retração linear, absorção de água, porosidade aparente e resistência ao choque térmico. Conforme se aumentou a substituição parcial de argila refratária por SCA, foi obtido um melhor empacotamento da mistura granular e, consequentemente, ocorreu uma melhora nas propriedades mecânicas das amostras. Por outro lado, o material apresentou-se mais frágil, com menor resistência ao choque térmico. Não foi encontrada variação na retração linear após a queima, já a absorção de água e porosidade aparente diminuíram conforme se aumentou a substituição da argila pela SCA. A microestrutura do material foi analisada através de análise por microscopia eletrônica de varredura (MEV) e difração de raios-x, onde se identificaram as fases cristalinas na mineralogia do material resultante. Na análise da mineralogia do material observou-se um aumento de pico de cristobalita conforme se aumentou o teor de SCA na mistura, em função da cristalização da sílica livre. Um menor volume de porosidade foi encontrado conforme se aumentou o teor de substituição de argila pela SCA.
With the intention of adding value to rice husk ash, a byproduct of paddy industry, and contribute to sustainable development of the country, this research sought to develop refractory ceramic materials with refractory partial replacement of clay by silica from rice husk (SCA) produced from electricity generation. Currently on the western border of the State of Rio Grande do Sul, there are several biomass power plants for generating electricity by burning rice husk. This technology comes against the need for diversification of energy sources in the country. The paddy industry in Brazil produces approximately 12 million tons of rice per year, of which approximately 2.5 million tons per year are converted into shell. If all this bark was burned, it would generate approximately 500 tons of ash, which is rich in silica. Thus enabling its use tends to reduce the environmental liability beyond economic benefits. In the present work, the effect of partial replacement of silica refractory clay for rice husk (SCA) on the mechanical and thermomechanical properties of refractory ceramic materials was analyzed for percentages of 5, 10 and 20%. The mechanical properties of these materials were analyzed by testing compressive strength, direct-drive, three point bending and superficial hardness. We also analyzed the linear shrinkage, water absorption, apparent porosity and resistance to thermal shock. As increased the partial replacement of refractory clay for SCA in the mixture was obtained a better packing of the granular mixture and, consequently, better results in mechanical properties were found. On the other hand, the material appeared more brittle, with a lower thermal shock resistance. Was not found in the linear shrinkage after firing, the water absorption and apparent porosity decreased as the clay was increased by replacement SCA. The microstructure of the material was analyzed by scanning electron microscopy (MEV) and x-ray diffraction where the crystalline phases identified in the mineralogy of the resulting material. The analysis of the mineralogy of the material was observed an increase of cristobalite peak was increased as the content of SCA, depending on the crystallization of the free silica. A smaller volume of porosity is found according to the increased content of clay replacement SCA.
Braconnier, Daniel J. "Materials Informatics Approach to Material Extrusion Additive Manufacturing". Digital WPI, 2018. https://digitalcommons.wpi.edu/etd-theses/204.
Testo completoSkerry, Nathaniel S. (Nathaniel Standish) 1971. "Transformed materials : a material research center in Milan, Italy". Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/70358.
Testo completoIncludes bibliographical references (p. 74-75).
[Transformed Materials] is an exploration into today's design methodologies of architecture production. The emergence of architectural form is questioned in relation to the temporal state of design intent and the physical material construct. At a time when there is an increased awareness of the current state of technology, material innovation and methods of fabrication, there are new speculations of what materiality is and can be. This thesis will propose an architecture that emerges through an exploration of the material concept that directly informs and expresses the fundamental ideas of the project. Building methods have changed widely over time, and are co-responsible for creating a dialog between functional requirements, technological invention, and material implication that reflects the current cultural state. Today's architectural products have in a sense reverted back to thin surfaces. Current cultural issues such as socioeconomic, environmental impact, transportability, efficiency, lightness, storability, technology, and mass production, have over time created a state of "thinness ". This project tries to offset the current trend of building by accepting the norms of architectural products, and reinventing their role within a contemporary language that explores more deeply the material qualities and properties associates with it. This thesis will use steel as the primary building material. Steel is a material that has become standardized in how it is shaped and formed, thus its ability to produce an architecture has been reduced purely to a dogmatiC approach of engineered solutions or preconceived results. Steel, is artificial by nature; if we suspend our preconceptions of steel, could the material be designed such that its role is critical in defining space, structure and program in a tectonic system? The area of research and examination will be focused on the design of a Material Research Center (mRC). located in Milan, Italy.
by Nathaniel S. Skerry.
M.Arch.
Martin, Luke Andrew. "A Novel Material Modulus Function for Modeling Viscoelastic Materials". Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/26891.
Testo completoPh. D.
Samsonow, Emily L. "Material Celebration: Exploring the Architectural Potential of Waste Materials". University of Cincinnati / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1306501078.
Testo completoFreitas, Ricardo Luiz Barros de [UNESP]. "Fabricação, caracterização e aplicações do compósito PZT/PVDF". Universidade Estadual Paulista (UNESP), 2012. http://hdl.handle.net/11449/100281.
Testo completoConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Um material compósito é constituído pela combinação de dois ou mais materiais, onde se procura sintetizar um novo material multifásico, e que abrigue as melhores características individuais de cada um de seus constituintes. Compósitos de polímeros (matriz) e ferroelétricos (inclusões) podem manifestar piezoeletricidade, ou seja, a produção de uma resposta elétrica devido a uma excitação mecânica, e vice-versa. Nesta tese o material polimérico usado para preparar os filmes ou lâminas de nanocompósitos é o PVDF, e, o material cerâmico é formado por nanopartículas de PZT. Ambos os materiais são dielétricos, porém, com características muito distintas (por exemplo, o PVDF tem aproximadamente 1/4 da densidade e 1/250 da constante dielétrica do PZT). O PZT é muito utilizado em transdutores, principalmente devido aos seus elevados coeficientes piezoelétricos, contudo, é quebradiço e sofre desgaste quando empregado na forma de filmes ou lâminas. Por outro lado, o PVDF é um polímero piezoelétrico que apresenta grande flexibilidade e excelentes resistências mecânica e química, porém, seus coeficientes piezoelétricos são apenas moderados. A fim de se aumentar a flexibilidade do PZT, mistura-se o pó cerâmico, na forma de nanopartículas, com o PVDF, também pulverizado. Na tese, evidencia-se que o compósito constituído por esta combinação cerâmica-polímero proporciona uma nova classe de materiais funcionais com grande potencial de aplicação, por terem combinadas a resistência e rigidez das cerâmicas, e, a elasticidade, flexibilidade, baixa densidade e elevada resistência a ruptura mecânica dos polímeros. O novo material tem grande resistência a choques mecânicos, flexibilidade, maleabilidade, e, principalmente, coeficientes piezoelétricos relativamente elevados. Amostras do compósito...
A composite material is constituted by the combination of two or more materials, which synthesizes a new multiphase material, and has the best individual characteristics of each of its constituents. Polymer composites (matrix) and ferroelectric (inclusions) can express piezoelectricity, i.e. the production of an electrical response due to a mechanical excitation, and vice versa. In this thesis the polymeric material used to prepare the films or slides of nanocomposites is the PVDF, and, ceramic material is formed by PZT nanoparticles. Both materials are dielectrics, however, with very different characteristics (for example, the PVDF is approximately 1/4 density and 1/250 relative permittivity from PZT). The PZT is widely used in transducers, mainly due to their high piezoelectric coefficients, however, is brittle and suffers wear and tear when employed in the form of films or slides. On the other hand, the PVDF is a piezoelectric polymer that offers great flexibility and excellent mechanical and chemical resistances, however, its piezoelectric coefficients are only moderate. In order to increase the flexibility of PZT, ceramic powder is mix, in the form of nanoparticles, with PVDF, also sprayed. In theory, it becomes evident that composite consisting of this ceramic- polymer combination delivers a new class of functional materials with great potential for application, because they combine the strength and rigidity of ceramics, and elasticity, flexibility, low density and high resistance to mechanical disruption of polymers. The new material has great resistance to mechanical shock, flexibility, suppleness, and, primarily, relatively high piezoelectric coefficients. PZT/PVDF composite samples were fabricated and characterized aiming to applications such as: piezoelectric actuators, acoustic emission detectors, and energy... (Complete abstract click electronic access below)
Freitas, Ricardo Luiz Barros de. "Fabricação, caracterização e aplicações do compósito PZT/PVDF /". Ilha Solteira, [s.n.], 2012. http://hdl.handle.net/11449/100281.
Testo completoCoorientador: Antônio de Pádua Lima Filho
Banca: Cláudio Kitano
Banca: João Antonio Pereira
Banca: Adriano Rogério Bruno Tech
Resumo: Um material compósito é constituído pela combinação de dois ou mais materiais, onde se procura sintetizar um novo material multifásico, e que abrigue as melhores características individuais de cada um de seus constituintes. Compósitos de polímeros (matriz) e ferroelétricos (inclusões) podem manifestar piezoeletricidade, ou seja, a produção de uma resposta elétrica devido a uma excitação mecânica, e vice-versa. Nesta tese o material polimérico usado para preparar os filmes ou lâminas de nanocompósitos é o PVDF, e, o material cerâmico é formado por nanopartículas de PZT. Ambos os materiais são dielétricos, porém, com características muito distintas (por exemplo, o PVDF tem aproximadamente 1/4 da densidade e 1/250 da constante dielétrica do PZT). O PZT é muito utilizado em transdutores, principalmente devido aos seus elevados coeficientes piezoelétricos, contudo, é quebradiço e sofre desgaste quando empregado na forma de filmes ou lâminas. Por outro lado, o PVDF é um polímero piezoelétrico que apresenta grande flexibilidade e excelentes resistências mecânica e química, porém, seus coeficientes piezoelétricos são apenas moderados. A fim de se aumentar a flexibilidade do PZT, mistura-se o pó cerâmico, na forma de nanopartículas, com o PVDF, também pulverizado. Na tese, evidencia-se que o compósito constituído por esta combinação cerâmica-polímero proporciona uma nova classe de materiais funcionais com grande potencial de aplicação, por terem combinadas a resistência e rigidez das cerâmicas, e, a elasticidade, flexibilidade, baixa densidade e elevada resistência a ruptura mecânica dos polímeros. O novo material tem grande resistência a choques mecânicos, flexibilidade, maleabilidade, e, principalmente, coeficientes piezoelétricos relativamente elevados. Amostras do compósito... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: A composite material is constituted by the combination of two or more materials, which synthesizes a new multiphase material, and has the best individual characteristics of each of its constituents. Polymer composites (matrix) and ferroelectric (inclusions) can express piezoelectricity, i.e. the production of an electrical response due to a mechanical excitation, and vice versa. In this thesis the polymeric material used to prepare the films or slides of nanocomposites is the PVDF, and, ceramic material is formed by PZT nanoparticles. Both materials are dielectrics, however, with very different characteristics (for example, the PVDF is approximately 1/4 density and 1/250 relative permittivity from PZT). The PZT is widely used in transducers, mainly due to their high piezoelectric coefficients, however, is brittle and suffers wear and tear when employed in the form of films or slides. On the other hand, the PVDF is a piezoelectric polymer that offers great flexibility and excellent mechanical and chemical resistances, however, its piezoelectric coefficients are only moderate. In order to increase the flexibility of PZT, ceramic powder is mix, in the form of nanoparticles, with PVDF, also sprayed. In theory, it becomes evident that composite consisting of this ceramic- polymer combination delivers a new class of functional materials with great potential for application, because they combine the strength and rigidity of ceramics, and elasticity, flexibility, low density and high resistance to mechanical disruption of polymers. The new material has great resistance to mechanical shock, flexibility, suppleness, and, primarily, relatively high piezoelectric coefficients. PZT/PVDF composite samples were fabricated and characterized aiming to applications such as: piezoelectric actuators, acoustic emission detectors, and energy... (Complete abstract click electronic access below)
Doutor
Freitas, Jefferson Arlen. "Sintese e caracterização de biossorventes a partir da imobilização da biomassa Sargassum sp em matrizes ceramicas pelo processo sol-gel". [s.n.], 2007. http://repositorio.unicamp.br/jspui/handle/REPOSIP/266214.
Testo completoTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Quimica
Made available in DSpace on 2018-08-11T04:08:18Z (GMT). No. of bitstreams: 1 Freitas_JeffersonArlen_D.pdf: 3985383 bytes, checksum: 8a45be364ed2c151ea51fbb373ede3d6 (MD5) Previous issue date: 2007
Resumo: Este trabalho tratou da pesquisa e desenvolvimento de um adsorvente alternativo, aplicável no tratamento de rejeitos líquidos industriais, contendo baixas concentrações dos metais pesados Cd, Cu e Zn. Ele teve como objetivo geral produzir esferas adsorventes de zeólita 4A - Sargassum sp. com custo de produção competitivo e com elevada capacidade de captura dos metais pesados Cd, Cu e Zn, nas quais o processo de adsorção ocorra com elevada eficiência e com cinética favorável. A produção das esferas envolveu uma abordagem inovadora do Processo Sol - Gel, a qual permitiu produzir sete tipos de esferas, partindo da combinação e imobilização de adsorventes tradicionais pesquisados: biomassa Sargassum sp., caulim, alumina e zeólita. Este processo de imobilização das partículas dos adsorventes tradicionais causa uma obstrução dos poros e canais existentes nestas partículas e, com isto, reduz a capacidade de captura dos metais pesados nas esferas resultantes. Felizmente, a combinação de adsorventes realizada viabilizou a obtenção de esferas adsorventes com elevada capacidade de captura de metais pesados e com cinética favorável. É o caso das esferas de zeólita 4A, com capacidade máxima de captura de Cd+Cu+Zn de 746 µmol/g, com uma velocidade de captura aproximada de 18 µmol/g.h e com uma eficiência de captura de 82% e das esferas de zeólita 4A - 50% em peso de Sargassum sp., com capacidade máxima de captura de Cd+Cu+Zn de 709 µmol/g, com uma velocidade de captura aproximada de 20 µmol/g.h e com uma eficiência de captura de 83%. O comportamento de adsorção destas esferas se ajustou ao modelo de equilíbrio de Freundlich. Elas possuem uma cinética de adsorção compatível com o modelo cinético de pseudo-segunda ordem. Ao tratarem um efluente industrial real, estas esferas apresentam uma eficiência de captura de Cd+Cu+Zn =90% enquanto que numa resina quelante comercial esta eficiência é de 99,5%. Tem-se, pois, esferas adsorventes com elevada eficiência e baixo custo de produção, tornando-as um bom adsorvente para aplicação no tratamento de efluentes líquidos industriais com baixa concentração de Cd, Cu e Zn
Abstract: In this work had been made a research and the development of an alternative adsorbent which may be applied in the treatment of industrial liquid effluents containing low concentration of heavy metals, Cd, Cu and Zn. The main objective was to produce 4A type zeolite-Sargassum sp. adsorbents spheres with the following characteristics: competitive fabrication cost; high uptake capacity of the heavy metals, Cd, Cu and Zn; high affinity by the referred heavy metals; and appropriated adsorption kinetic. The marking of the adsorbents spheres had involve the innovative use of the Sol-gel Process. That had permitted to obtain seven types of adsorbents spheres for combination and immobilization of the particles of traditional adsorbents Sargassum sp., kaolin, alumina and 4A type zeolite. This immobilization process causes an obstruction of the pores and the channels present in these particles that reduced the uptake capacity of the produced adsorbents spheres. Fortunately, the combination of traditional adsorbents particles produced adsorbent spheres with high uptake capacity, high uptake efficiency, and appropriate adsorption kinetic. As, two types of adsorbent spheres, 4A type zeolite and 4A type zeolite-50% Sargassum sp. adsorbed 746 µmol/g and 709 µmol/g with an adsorption velocity of 18 µmol/g.h and 20 µmol/g.h, and a uptake efficiency of 82% and 83%, respectively. The adsorption behavior of these adsorbent spheres had been fitting to the Freundlich model. They have an adsorption kinetic compatible with the pseudo-second order model. When it treated an industrial liquid effluent with these adsorbent spheres, they showed a uptake efficiency higher than 90% and while an uptake efficiency of 99,5% is shown for the commercial chelant resin
Doutorado
Sistemas de Processos Quimicos e Informatica
Doutor em Engenharia Química
Karlsson, Johan. "Composite material in car hood : Investigation of possible sandwich materials". Thesis, Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-45633.
Testo completoWretborn, Joel. "Modelling cracks in solid materials using the Material Point Method". Thesis, Linköpings universitet, Institutionen för fysik, kemi och biologi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-136797.
Testo completoLibri sul tema "Materials"
Stoller, Roger E., Rudy J. M. Konings, Todd R. Allen e Shinsuke Yamanaka. Comprehensive nuclear materials: Material performance and corrosion/waste materials. Amsterdam: Elsevier, 2012.
Cerca il testo completoPrasad, N. Eswara, e R. J. H. Wanhill, a cura di. Aerospace Materials and Material Technologies. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-2134-3.
Testo completoPrasad, N. Eswara, e R. J. H. Wanhill, a cura di. Aerospace Materials and Material Technologies. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-2143-5.
Testo completoSundarkrishnaa, K. L. Friction Material Composites: Materials Perspective. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Cerca il testo completoKoohgilani, Mehran. Advanced composite materials: Composite material's history. Poole: Bournemouth University, 2001.
Cerca il testo completoSymposium de Materiales Poliméricos (1987 San Sebastián, Spain). Material polimerikoei buruzko symposiuma =: Symposium de Materiales Poliméricos = Symposium on Polymer Materials. Gasteiz: Eusko Jaurlaritzaren Argitalpen-Zerbitzu Nagusia, 1988.
Cerca il testo completo1981-, Laughlin Zoe, a cura di. Material matters: New materials in design. London: Black Dog Pub., 2012.
Cerca il testo completoUnited States. Bureau of Mines., a cura di. Material use patterns, intermaterial competition, advanced materials technologies: Information & analysis materials program. Washington, D.C.?: U.S. Dept. of the Interior, Bureau of Mines, 1991.
Cerca il testo completoGifford, Clive. Materiales (Materials). Altea, 2006.
Cerca il testo completoSnedden, Robert. Material World: Changing Materials / Separating Materials / Materials Technology / Solids Liquids and Gases (Material World) (Material World). Heinemann Educational Books - Library Division, 2001.
Cerca il testo completoCapitoli di libri sul tema "Materials"
Munteán, László, e Liedeke Plate. "Introduction: Materials Matter". In Edition Kulturwissenschaft, 13–34. Bielefeld, Germany: transcript Verlag, 2023. http://dx.doi.org/10.14361/9783839466971-002.
Testo completoMulder, Marcel. "Materials and Material Properties". In Basic Principles of Membrane Technology, 17–53. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-017-0835-7_2.
Testo completoYucel, Taner, Esra Yildiz e Ugur Erdemir. "Material Selection: Restorative Materials". In Esthetic and Functional Management of Diastema, 185–96. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24361-0_13.
Testo completoMulder, Marcel. "Materials and Material Properties". In Basic Principles of Membrane Technology, 22–70. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1766-8_2.
Testo completoKnowles, Kim. "Materials, Materiality, New Materialism". In Experimental Film and Artists’ Moving Image, 25–69. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44309-2_2.
Testo completoGoldstein, Julia L. Freer, e Paul Foulkes-Arellano. "Material Innovations and Future Materials". In Materials and Sustainability, 114–30. London: Routledge, 2024. http://dx.doi.org/10.4324/9781003409267-10.
Testo completoMaugin, Gérard A. "Material forces in anelastic materials". In Material Inhomogeneities in Elasticity, 234–47. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-4481-8_10.
Testo completoGhoddusi, Jamileh. "Material Modifications and Related Materials". In Mineral Trioxide Aggregate in Dentistry, 131–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-55157-4_7.
Testo completoBirch, Emily, Martyn Dade-Robertson, Ben Bridgens e Meng Zhang. "Material Ecology 3—Smart Materials". In The Routledge Companion to Ecological Design Thinking, 293–98. New York: Routledge, 2022. http://dx.doi.org/10.4324/9781003183181-27.
Testo completoElGhazi, Yomna, Neveen Hamza e Martyn Dade-Robertson. "Material Ecology 3—Smart Materials". In The Routledge Companion to Ecological Design Thinking, 276–84. New York: Routledge, 2022. http://dx.doi.org/10.4324/9781003183181-25.
Testo completoAtti di convegni sul tema "Materials"
Boehme, Bjoern, K. M. B. Jansen, Sven Rzepka e Klaus-Juergen Wolter. "Comprehensive material characterization of organic packaging materials". In 2009 10th International Conferene on Thermal, Mechanical and Multi-Physics simulation and Experiments in Microelectronics and Microsystems (EuroSimE). IEEE, 2009. http://dx.doi.org/10.1109/esime.2009.4938431.
Testo completoO'Neill, Feidhlim T., John T. Sheridan e Justin R. Lawrence. "Nonlocal material response of photopolymer holographic materials". In OPTO Ireland, a cura di Thomas J. Glynn. SPIE, 2003. http://dx.doi.org/10.1117/12.474748.
Testo completoAllen, Emily A., Lee D. Taylor e John P. Swensen. "Smart Material Composites for Discrete Stiffness Materials". In ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/smasis2018-8203.
Testo completoKathuria, Yash P. "Laser material interaction technologies for materials processing". In OPTIKA '98: Fifth Congress on Modern Optics, a cura di Gyorgy Akos, Gabor Lupkovics e Andras Podmaniczky. SPIE, 1998. http://dx.doi.org/10.1117/12.320983.
Testo completoOates, William, e Robert Sierakowski. "A Unified Material Model for Smart Materials". In 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
18th AIAA/ASME/AHS Adaptive Structures Conference
12th. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-2656.
Simkhovich, Boris, e Guy Bartal. "Material Loss Omits Nonlinearity in Optically Thick Materials". In Frontiers in Optics. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/fio.2017.ftu4d.2.
Testo completoTappan, Alexander, Gregory Long, Anita Renlund e Stanley Kravitz. "Microenergetic Materials - Microscale Energetic Material Processing and Testing". In 41st Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-242.
Testo completoTanaka, Fumiaki, Hiroshi Sato, Naoki Yoshii e Hidefumi Matsui. "Materials Informatics for Process and Material Co-optimization". In 2018 International Symposium on Semiconductor Manufacturing (ISSM). IEEE, 2018. http://dx.doi.org/10.1109/issm.2018.8651132.
Testo completoJiang, Chenfanfu, Craig Schroeder, Joseph Teran, Alexey Stomakhin e Andrew Selle. "The material point method for simulating continuum materials". In SIGGRAPH '16: Special Interest Group on Computer Graphics and Interactive Techniques Conference. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2897826.2927348.
Testo completoNg, Tang-Tat. "Gravitational Effect on Material Response of Granular Materials". In 12th Biennial International Conference on Engineering, Construction, and Operations in Challenging Environments; and Fourth NASA/ARO/ASCE Workshop on Granular Materials in Lunar and Martian Exploration. Reston, VA: American Society of Civil Engineers, 2010. http://dx.doi.org/10.1061/41096(366)12.
Testo completoRapporti di organizzazioni sul tema "Materials"
Johra, Hicham. Thermophysical Properties of Building Materials: Lecture Notes. Department of the Built Environment, Aalborg University, dicembre 2019. http://dx.doi.org/10.54337/aau320198630.
Testo completoGschwander, Stefan, Ana Lazaro, Monica Delgado, Christoph Rathgeber, Michael Brütting, Stephan Höhlein, Melissa Obermeyer et al. Summary of Work On development and characterization of improved Materials. IEA SHC Task 58, giugno 2021. http://dx.doi.org/10.18777/ieashc-task58-2021-0003.
Testo completoMcKinnon, Mark, Craig Weinschenk e Daniel Madrzykowski. Materials and Products Database Technical Reference Guide. Fire Safety Research Institute, UL Research Institutes, aprile 2023. http://dx.doi.org/10.54206/102376/rnnp3809.
Testo completoGardea, Andrew D., Ryan Nishimoto, Nancy Y. C. Yang, Alfredo Martin Morales, Scott A. Whalen, Jeffrey M. Chames e W. Miles Clift. Material compatibility and thermal aging of thermoelectric materials. Office of Scientific and Technical Information (OSTI), settembre 2009. http://dx.doi.org/10.2172/986608.
Testo completoJohra, Hicham. Air permeameter for porous building materials: Aalborg University prototype 2023. Department of the Built Environment, 2023. http://dx.doi.org/10.54337/aau545266824.
Testo completoThornell, Travis, Charles Weiss, Sarah Williams, Jennifer Jefcoat, Zackery McClelland, Todd Rushing e Robert Moser. Magnetorheological composite materials (MRCMs) for instant and adaptable structural control. Engineer Research and Development Center (U.S.), novembre 2020. http://dx.doi.org/10.21079/11681/38721.
Testo completoWyatt, Nicholas B., e Robert S. Chambers. Materials Analysis and Modeling of Underfill Materials. Office of Scientific and Technical Information (OSTI), agosto 2015. http://dx.doi.org/10.2172/1213488.
Testo completoWarren, James A. Workshop Summary: Materials Genome Initiative: Materials Data. National Institute of Standards and Technology, gennaio 2015. http://dx.doi.org/10.6028/nist.ir.8038.
Testo completoMisra, Manoranjan. Materials Evaluation, Degradation, alternate Materials, and Modeling. Office of Scientific and Technical Information (OSTI), giugno 2010. http://dx.doi.org/10.2172/1037461.
Testo completoCoverdale, R. Tate, Edward J. Garboczi e Dale P. Bentz. Computational materials science of cement-based materials :. Gaithersburg, MD: National Bureau of Standards, 1993. http://dx.doi.org/10.6028/nist.tn.1405.
Testo completo