Letteratura scientifica selezionata sul tema "Marine Biomass (Seaweed)"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Marine Biomass (Seaweed)".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Marine Biomass (Seaweed)"
Johnston, Katherine G., Abdelfatah Abomohra, Christopher E. French e Abdelrahman S. Zaky. "Recent Advances in Seaweed Biorefineries and Assessment of Their Potential for Carbon Capture and Storage". Sustainability 15, n. 17 (1 settembre 2023): 13193. http://dx.doi.org/10.3390/su151713193.
Testo completoMulders, Y., L. Mattio, JC Phillips, PS Lavery, GA Kendrick e T. Wernberg. "Patch dynamics driven by wave exposure in subtidal temperate seaweeds are exacerbated by warming oceans". Marine Ecology Progress Series 685 (10 marzo 2022): 85–95. http://dx.doi.org/10.3354/meps13989.
Testo completoFaisal, Shah, Abdelrahman Zaky, Qingyuan Wang, Jin Huang e Abdelfatah Abomohra. "Integrated Marine Biogas: A Promising Approach towards Sustainability". Fermentation 8, n. 10 (7 ottobre 2022): 520. http://dx.doi.org/10.3390/fermentation8100520.
Testo completoGinocchio, Rosanna, Matías Araya, Jéssica Machado, Luz María de la Fuente, Fabiola Orrego, Eduardo C. Arellano e Loretto Contreras-Porcia. "Seaweed biochar (sourced from marine water remediation farms) for soil remediation: Towards an integrated approach of terrestrial-coastal marine water remediation". BioResources 18, n. 3 (17 maggio 2023): 4637–56. http://dx.doi.org/10.15376/biores.18.3.4637-4656.
Testo completoKhan, Nida, K. Sudhakar e R. Mamat. "Thermogravimetric Analysis of Marine Macroalgae Waste Biomass as Bio-Renewable Fuel". Journal of Chemistry 2022 (29 settembre 2022): 1–9. http://dx.doi.org/10.1155/2022/6417326.
Testo completoKorzen, Leor, Yoav Peled, Shiri Zemah Shamir, Mordechai Shechter, Aharon Gedanken, Avigdor Abelson e Alvaro Israel. "An economic analysis of bioethanol production from the marine macroalga Ulva (Chlorophyta)". TECHNOLOGY 03, n. 02n03 (giugno 2015): 114–18. http://dx.doi.org/10.1142/s2339547815400105.
Testo completoSarkar, Md Shirajul Islam, Md Kamal, Muhammad Mehedi Hasan e Md Ismail Hossain. "Present status of naturally occurring seaweed flora and their utilization in Bangladesh". Research in Agriculture Livestock and Fisheries 3, n. 1 (26 maggio 2016): 203–16. http://dx.doi.org/10.3329/ralf.v3i1.27879.
Testo completoIngle, Kapilkumar Nivrutti, Hadar Traugott e Alexander Golberg. "Challenges for marine macroalgal biomass production in Indian coastal waters". Botanica Marina 63, n. 4 (27 agosto 2020): 327–40. http://dx.doi.org/10.1515/bot-2018-0099.
Testo completoSong, Yun-Mi, Hui Gyeong Park e Jung-Soo Lee. "Hierarchically Graphitic Carbon Structure Derived from Metal Ions Impregnated Harmful Inedible Seaweed as Energy-Related Material". Materials 17, n. 18 (21 settembre 2024): 4643. http://dx.doi.org/10.3390/ma17184643.
Testo completoPhang, Siew-Moi, Hui-Yin Yeong e Phaik-Eem Lim. "The seaweed resources of Malaysia". Botanica Marina 62, n. 3 (26 giugno 2019): 265–73. http://dx.doi.org/10.1515/bot-2018-0067.
Testo completoTesi sul tema "Marine Biomass (Seaweed)"
Malik, Danish J. "Algal biomass as adsorbents for heavy metal sorption from aqueous solutions". Thesis, Loughborough University, 1999. https://dspace.lboro.ac.uk/2134/7196.
Testo completo"Development of seaweed biomass as a biosorbent for metal ions removal and recovery from industrial effluent". 2000. http://library.cuhk.edu.hk/record=b5890420.
Testo completoThesis (M.Phil.)--Chinese University of Hong Kong, 2000.
Includes bibliographical references (leaves 134-143).
Abstracts in English and Chinese.
Acknowledgements --- p.i
Abstract --- p.ii
Contents --- p.vi
List of Figures --- p.xi
List of Tables --- p.xv
Chapter 1. --- Introduction --- p.1
Chapter 1.1 --- Reviews --- p.1
Chapter 1.1.1 --- Heavy metals in the environment --- p.1
Chapter 1.1.2 --- Heavy metal pollution in Hong Kong --- p.3
Chapter 1.1.3 --- Electroplating industries in Hong Kong --- p.7
Chapter 1.1.4 --- "Chemistry, biochemistry and toxicity of selected metal ions: copper, nickel and zinc" --- p.8
Chapter a. --- Copper --- p.10
Chapter b. --- Nickel --- p.11
Chapter c. --- Zinc --- p.12
Chapter 1.1.5 --- Conventional physico-chemical methods of metal ions removal from industrial effluent --- p.13
Chapter a. --- Ion exchange --- p.14
Chapter b. --- Precipitation --- p.14
Chapter 1.1.6 --- Alternative for metal ions removal from industrial effluent: biosorption --- p.15
Chapter a. --- Definition of biosorption --- p.15
Chapter b. --- Mechanisms involved in biosorption of metal ions --- p.17
Chapter c. --- Criteria for a good metal sorption process and advantages of biosorption for removal of heavy metal ions --- p.19
Chapter d. --- Selection of potential biosorbent for metal ions removal --- p.20
Chapter 1.1.7 --- Procedures of biosorption --- p.23
Chapter a. --- Basic study --- p.23
Chapter b. --- Pilot-scale study --- p.25
Chapter c. --- Examples of commercial biosorbent --- p.27
Chapter 1.1.8 --- Seaweed as a potential biosorbent for heavy metal ions --- p.27
Chapter 1.2 --- Objectives of study --- p.30
Chapter 2. --- Materials and Methods --- p.33
Chapter 2.1 --- Collection of seaweed samples --- p.33
Chapter 2.2 --- Processing of seaweed biomass --- p.33
Chapter 2.3 --- Chemicals --- p.33
Chapter 2.4 --- Characterization of seaweed biomass --- p.39
Chapter 2.4.1 --- Moisture content of seaweed biomass --- p.39
Chapter 2.4.2 --- Metal ions content of seaweed biomass --- p.39
Chapter 2.5 --- Characterization of metal ions biosorption by seaweed --- p.39
Chapter 2.5.1 --- Effect of biomass weight and selection of biomass --- p.39
Chapter 2.5.2 --- Effect of pH --- p.40
Chapter 2.5.3 --- Effect of retention time --- p.41
Chapter 2.5.4 --- Effect of metal ions concentration --- p.41
Chapter 2.5.5 --- Effect of mix-cations and mix-anions on the removal capacity of selected metal ions by Ulva lactuca --- p.43
Chapter 2.5.6 --- Recovery of adsorbed metal ions from Ulva lactuca (I): screening for suitable desorbing agents --- p.44
Chapter 2.5.7 --- Recovery of adsorbed metal ions from Ulva lactuca (II): multiple adsorption-desorption cycles of selected metal ions --- p.45
Chapter 2.5.8 --- Removal and recovery of selected metal ions from electroplating effluent by Ulva lactuca --- p.45
Chapter 2.6 --- Statistical analysis of data --- p.46
Chapter 3. --- Results --- p.47
Chapter 3.1 --- Effect of biomass weight and selection of biomass --- p.47
Chapter 3.1.1 --- Effect of biomass weight --- p.47
Chapter 3.1.2 --- Selection of biomass --- p.58
Chapter 3.2 --- Effect of pH --- p.58
Chapter 3.2.1 --- Cu2+ --- p.58
Chapter 3.2.2 --- Ni2+ --- p.61
Chapter 3.2.3 --- Zn2+ --- p.61
Chapter 3.2.4 --- Determination of optimal condition for biosorption of Cu2+ ,Ni2+ and Zn2+ by Ulva lactuca --- p.67
Chapter 3.3 --- Effect of retention time --- p.67
Chapter 3.4 --- Effect of metal ions concentration --- p.73
Chapter 3.4.1 --- Relationship of removal capacity with initial concentration of metal ions --- p.73
Chapter 3.4.2 --- Langmuir adsorption isotherm --- p.73
Chapter 3.4.3 --- Freundlich adsorption isotherm --- p.77
Chapter 3.5 --- Effect of mix-cations and mix-anions on the removal capacity of selected metal ions by Ulva lactuca --- p.81
Chapter 3.5.1 --- Effect of mix-cations --- p.81
Chapter 3.5.2 --- Effect of mix-anions --- p.85
Chapter 3.6 --- Recovery of adsorbed metal ions from Ulva lactuca (I): screening of suitable desorbing agents --- p.91
Chapter 3.6.1 --- Cu2+ --- p.91
Chapter 3.6.2 --- Ni2+ --- p.91
Chapter 3.6.3 --- Zn2+ --- p.91
Chapter 3.7 --- Recovery of adsorbed metal ions from Ulva lactuca (II): multiple adsorption-desorption cycles of selected metal ions --- p.94
Chapter 3.8 --- Removal and recovery of selected metal ions from electroplating effluent by Ulva lactuca --- p.97
Chapter 4. --- Discussion --- p.106
Chapter 4.1 --- Effect of biomass weight and selection of biomass --- p.106
Chapter 4.1.1 --- Effect of biomass weight --- p.106
Chapter 4.1.2 --- Selection of biomass --- p.107
Chapter 4.2 --- Effect of pH --- p.109
Chapter 4.3 --- Effect of retention time --- p.112
Chapter 4.4 --- Effect of metal ions concentration --- p.114
Chapter 4.4.1 --- Relationship of removal capacity with initial concentration of metal ions --- p.114
Chapter 4.4.2 --- Langmuir adsorption isotherm --- p.114
Chapter 4.4.3 --- Freundlich adsorption isotherm --- p.115
Chapter 4.4.4 --- Insights from isotherm study --- p.117
Chapter 4.5 --- Effect of mix-cations and mix-anions on the removal capacity of selected metal ions by Ulva lactuca --- p.118
Chapter 4.5.1 --- Effect of mix-cations --- p.118
Chapter 4.5.2 --- Effect of mix-anions --- p.120
Chapter 4.6 --- Recovery of adsorbed metal ions from Ulva lactuca (I): screening of suitable desorbing agents --- p.122
Chapter 4.7 --- Recovery of adsorbed metal ions from Ulva lactuca (II): multiple adsorption-desorption cycles of selected metal ions --- p.124
Chapter 4.8 --- Removal and recovery of selected metal ions from electroplating effluent by Ulva lactuca --- p.126
Chapter 5. --- Conclusion --- p.131
Chapter 6. --- Summary --- p.134
Chapter 7. --- References --- p.134
Chapter 8. --- Appendixes --- p.144
Holden, Jessica. "Beach-cast deposition, food provision, and commercial harvesting of a non-indigenous seaweed, Mazzaella japonica, in Baynes Sound, British Columbia". Thesis, 2016. http://hdl.handle.net/1828/7544.
Testo completoGraduate
2017-08-19
jjulin.holden@gmail.com
Capitoli di libri sul tema "Marine Biomass (Seaweed)"
Chojnacka, Katarzyna. "Using the Biomass of Seaweeds in the Production of Components of Feed and Fertilizers". In Handbook of Marine Macroalgae, 478–90. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9781119977087.ch31.
Testo completoSalleh, Kushairi Mohd, e Najah Fareeha Abd Rashid. "Potential Seaweed-Derived Bioactive Compounds for Pharmaceutical Applications". In Marine Biomass, 297–318. De Gruyter, 2024. http://dx.doi.org/10.1515/9783111353951-013.
Testo completoKhairul Alam Sobuj, Mohammad, Md Mohidul Islam, Shafiqur Rahman e Yahia Mahmud. "Cultivation and Product Development Study of Commercially Important Seaweeds in South-Eastern Coast of Bangladesh". In Food Safety - New Insights [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.111937.
Testo completoThomas, Jean-Baptiste, José Potting e Fredrik Gröndahl. "Environmental impacts of seaweed cultivation: kelp farming and preservation". In Seaweed and microalgae as alternative sources of protein, 165–92. Burleigh Dodds Science Publishing, 2021. http://dx.doi.org/10.19103/as.2021.0091.11.
Testo completoSingh, Yadvinder, Komal, Rahul Badru, Rupinder Pal Singh, D. P. Singh e J. I. S. Khattar. "Potential of Biomaterials Derived from Marine Algae as Anticancer Agent". In Functional Foods for Health Maintenance: Understanding their Role in Cancer Prevention, 241–90. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815179217123010014.
Testo completoSamanta, Brajogopal, e Pattigundla Swathi. "Macroalgal Epiphytic Microbiome: A Potential Source of Novel Drugs". In Marine Ecology: Current and Future Developments, 184–205. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815051995123030008.
Testo completoAtti di convegni sul tema "Marine Biomass (Seaweed)"
Goudey, Clifford A. "Wave Basin Tests of a Novel Offshore Macroalgae Farming System". In SNAME 30th American Towing Tank Conference. SNAME, 2017. http://dx.doi.org/10.5957/attc-2017-0006.
Testo completoRapporti di organizzazioni sul tema "Marine Biomass (Seaweed)"
Mitchell, Brian G., Amir Neori, Charles Yarish, D. Allen Davis, Tzachi Samocha e Lior Guttman. The use of aquaculture effluents in spray culture for the production of high protein macroalgae for shrimp aqua-feeds. United States Department of Agriculture, gennaio 2013. http://dx.doi.org/10.32747/2013.7597934.bard.
Testo completoO'Connell, Kelly, David Burdick, Melissa Vaccarino, Colin Lock, Greg Zimmerman e Yakuta Bhagat. Coral species inventory at War in the Pacific National Historical Park: Final report. National Park Service, 2024. http://dx.doi.org/10.36967/2302040.
Testo completo