Letteratura scientifica selezionata sul tema "MapReduce programming model"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "MapReduce programming model".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "MapReduce programming model"
Zhang, Guigang, Chao Li, Yong Zhang e Chunxiao Xing. "A Semantic++ MapReduce Parallel Programming Model". International Journal of Semantic Computing 08, n. 03 (settembre 2014): 279–99. http://dx.doi.org/10.1142/s1793351x14400091.
Testo completoLämmel, Ralf. "Google’s MapReduce programming model — Revisited". Science of Computer Programming 70, n. 1 (gennaio 2008): 1–30. http://dx.doi.org/10.1016/j.scico.2007.07.001.
Testo completoRetnowo, Murti. "Syncronize Data Using MapReduceModel Programming". International Journal of Engineering Technology and Natural Sciences 3, n. 2 (31 dicembre 2021): 82–88. http://dx.doi.org/10.46923/ijets.v3i2.140.
Testo completoGarg, Uttama. "Data Analytic Models That Redress the Limitations of MapReduce". International Journal of Web-Based Learning and Teaching Technologies 16, n. 6 (novembre 2021): 1–15. http://dx.doi.org/10.4018/ijwltt.20211101.oa7.
Testo completoGao, Tilei, Ming Yang, Rong Jiang, Yu Li e Yao Yao. "Research on Computing Efficiency of MapReduce in Big Data Environment". ITM Web of Conferences 26 (2019): 03002. http://dx.doi.org/10.1051/itmconf/20192603002.
Testo completoSiddesh, G. M., Kavya Suresh, K. Y. Madhuri, Madhushree Nijagal, B. R. Rakshitha e K. G. Srinivasa. "Optimizing Crawler4j using MapReduce Programming Model". Journal of The Institution of Engineers (India): Series B 98, n. 3 (12 agosto 2016): 329–36. http://dx.doi.org/10.1007/s40031-016-0267-z.
Testo completoZhang, Weidong, Boxin He, Yifeng Chen e Qifei Zhang. "GMR: graph-compatible MapReduce programming model". Multimedia Tools and Applications 78, n. 1 (23 agosto 2017): 457–75. http://dx.doi.org/10.1007/s11042-017-5102-2.
Testo completoDurairaj, M., e T. S. Poornappriya. "Importance of MapReduce for Big Data Applications: A Survey". Asian Journal of Computer Science and Technology 7, n. 1 (5 maggio 2018): 112–18. http://dx.doi.org/10.51983/ajcst-2018.7.1.1817.
Testo completoRokhman, Nur, e Amelia Nursanti. "The MapReduce Model on Cascading Platform for Frequent Itemset Mining". IJCCS (Indonesian Journal of Computing and Cybernetics Systems) 12, n. 2 (31 luglio 2018): 149. http://dx.doi.org/10.22146/ijccs.34102.
Testo completoWang, Changjian, Yuxing Peng, Mingxing Tang, Dongsheng Li, Shanshan Li e Pengfei You. "An Efficient MapReduce Computing Model for Imprecise Applications". International Journal of Web Services Research 13, n. 3 (luglio 2016): 46–63. http://dx.doi.org/10.4018/ijwsr.2016070103.
Testo completoTesi sul tema "MapReduce programming model"
Elteir, Marwa Khamis. "A MapReduce Framework for Heterogeneous Computing Architectures". Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/28786.
Testo completoPh. D.
Rivault, Sébastien. "Parallélisme, équilibrage de charges et extensibilité dans le traitement des mégadonnées sur des systèmes à grande échelle". Electronic Thesis or Diss., Orléans, 2024. http://www.theses.fr/2024ORLE1019.
Testo completoOver the past two decades, owing to the reduction of storage, exchange and data processing costs, the volume of data generated each year continues to explode. The challenges related to big data processing are often described by the 3Vs : volume, variety and velocity of data creation, analysis, and sharing. To store and analyze these large datasets, it is essential to use clusters of machines and scalable algorithms that are insensitive to load imbalance that may occur among processing nodes. Applications such as collaborative filtering, deduplication and entity resolution are necessary to identify relationships in big datasets relying on a notion of similarity between records. These applications enable finding users with similar tastes, cleaning data and detecting frauds in large datasets. In these cases, similarity join and similarity search operations are often used to retrieve all similar records in one or more datasets using a distance and a user-defined threshold. Although parallel joins have been widely studied and successfully implemented on parallel and distributed architectures, the algorithms are not suitable for similarity join operation, since there is no hashing or sorting techniques, in the literature, that can retrieve all potentially similar record pairs in one step. Many techniques have been introduced in the literature to reduce the search space while ensuring the completeness of the result and avoiding the computation of a Cartesian product and the comparison of all record pairs. However, the scalability of these techniques is limited and does not allow efficient processing of big datasets on large-scale systems. Approximate methods have been proposed to handle similarity join by ignoring a very small part of the result and providing a probabilistic guarantee on the completeness of the results, while reducing the search space. These methods rely on hash functions whose collision probabilities are sensitive to the objects' similarity. We rely on these techniques to propose efficient solutions for similarity join and similarity search processing, based on LSH (Locality Sensitive Hashing), distributed histograms, and randomized communication schemes in order to reduce processing time, communication, and disks I/O costs to only relevant data for various distances and objects. The aim is to propose a generic framework based on the MapReduce programming model that meets the challenges of volume, variety, and velocity of big data analysis.The efficiency and scalability of the proposed solutions were studied using a cost model and confirmed by a series of experiments measuring the result completeness and the reduction of the search space, while guaranteeing efficient similarity join processing regardless the data size and data skew, the distance and the user-defined thresholds
Chen, Jhih-Siang, e 陳智翔. "A study of distributed sequential pattern mining method based on MapReduce programming model". Thesis, 2016. http://ndltd.ncl.edu.tw/handle/18996078478404490541.
Testo completo淡江大學
資訊管理學系碩士班
104
Sequential pattern mining is a data mining method for obtaining frequent sequential patterns in a large sequential database. Conventional sequence data mining methods could be divided into two categories: Apriori-like methods and pattern growth methods. These algorithms are mainly executed on standalone environment. There are some disadvantages like large database scanning time, scalability problem, less efficient for massive dataset. To improve the performance of sequential pattern mining and to improve the scalability issues, this study presents a distributed sequential pattern mining method based on Hadoop platform and Map Reduce programming model. Mining tasks are decomposed to many distributed tasks, the Map function is used to mine each sequential pattern in a subset of database. Then the Reduce function merges together all these identified patterns. It simplifies the search space and acquires a higher mining efficiency. In this study, we have further discussion on the influence of the setting of user-specified minimum support threshold on the distributed mining process. According to our experiments, it has been found that the threshold setting should be different in Map and Reduce mining process to prevent loss of some frequent patterns.
Capitoli di libri sul tema "MapReduce programming model"
Jin, Hai, Shadi Ibrahim, Li Qi, Haijun Cao, Song Wu e Xuanhua Shi. "The MapReduce Programming Model and Implementations". In Cloud Computing, 373–90. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470940105.ch14.
Testo completoJin, Chao, e Rajkumar Buyya. "MapReduce Programming Model for .NET-Based Cloud Computing". In Lecture Notes in Computer Science, 417–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03869-3_41.
Testo completoJain, Arushi, Vishal Bhatnagar e Annavarapu Chandra Sekhara Rao. "Smart Heart Attack Forewarning Model Using MapReduce Programming Paradigm". In Advances in Information Communication Technology and Computing, 37–43. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5421-6_5.
Testo completoJanaki Meena, M., e S. P. Syed Ibrahim. "Statistical and Evolutionary Feature Selection Techniques Parallelized Using MapReduce Programming Model". In Studies in Big Data, 159–80. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27520-8_8.
Testo completoIndyk, Wojciech, Tomasz Kajdanowicz e Przemyslaw Kazienko. "Cooperative Decision Making Algorithm for Large Networks Using MapReduce Programming Model". In Lecture Notes in Computer Science, 53–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32609-7_7.
Testo completoBrindha, G. Siva, e M. Gobi. "CryptoDataMR: Enhancing the Data Protection Using Cryptographic Hash and Encryption/Decryption Through MapReduce Programming Model". In International Conference on Innovative Computing and Communications, 95–115. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3315-0_9.
Testo completoArputhamary, B. "Skew Handling Technique for Scheduling Huge Data Mapper with High End Reducers in MapReduce Programming Model". In Learning and Analytics in Intelligent Systems, 331–39. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38501-9_33.
Testo completoSuthaharan, Shan. "MapReduce Programming Platform". In Machine Learning Models and Algorithms for Big Data Classification, 99–119. Boston, MA: Springer US, 2016. http://dx.doi.org/10.1007/978-1-4899-7641-3_5.
Testo completoDimitrov, Vladimir. "Cloud Programming Models (MapReduce)". In Encyclopedia of Cloud Computing, 596–608. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118821930.ch49.
Testo completoRyczkowska, Magdalena, e Marek Nowicki. "Performance Comparison of Graph BFS Implemented in MapReduce and PGAS Programming Models". In Parallel Processing and Applied Mathematics, 328–37. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78054-2_31.
Testo completoAtti di convegni sul tema "MapReduce programming model"
Ming, Li, Xu Guang-Hui, Wu Li-Fa e Ji Yao. "Performance Research on MapReduce Programming Model". In 2011 First International Conference on Instrumentation, Measurement, Computer, Communication and Control (IMCCC). IEEE, 2011. http://dx.doi.org/10.1109/imccc.2011.60.
Testo completoSiddesh, G. M., K. G. Srinivasa, Ishank Mishra, Abhinav Anurag e Eklavya Uppal. "Phylogenetic Analysis Using MapReduce Programming Model". In 2015 IEEE International Parallel and Distributed Processing Symposium Workshop (IPDPSW). IEEE, 2015. http://dx.doi.org/10.1109/ipdpsw.2015.57.
Testo completoLuo, Yuan, e Beth Plale. "Hierarchical MapReduce Programming Model and Scheduling Algorithms". In 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid). IEEE, 2012. http://dx.doi.org/10.1109/ccgrid.2012.132.
Testo completoBenelallam, Amine, Abel Gómez e Massimo Tisi. "ATL-MR: model transformation on MapReduce". In SPLASH '15: Conference on Systems, Programming, Languages, and Applications: Software for Humanity. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2837476.2837482.
Testo completoKang, Yun Hee, e Young B. Park. "Applying MapReduce Programming Model for Handling Scientific Problems". In 2014 International Conference on Information Science and Applications (ICISA). IEEE, 2014. http://dx.doi.org/10.1109/icisa.2014.6847367.
Testo completoZhao, Junfeng, Wenhui Gai e Han Wu. "Fortran Code Refactoring Based on MapReduce Programming Model". In The 35th International Conference on Software Engineering and Knowledge Engineering. KSI Research Inc., 2023. http://dx.doi.org/10.18293/seke2023-072.
Testo completoLi, Min, Xin Yang e Xiaolin Li. "Domain-Based MapReduce Programming Model for Complex Scientific Applications". In 2013 IEEE International Conference on High Performance Computing and Communications (HPCC) & 2013 IEEE International Conference on Embedded and Ubiquitous Computing (EUC). IEEE, 2013. http://dx.doi.org/10.1109/hpcc.and.euc.2013.87.
Testo completoDeshmukh, Rajshree A., Bharathi H. N. e Amiya K. Tripathy. "Parallel Processing of Frequent Itemset Based on MapReduce Programming Model". In 2019 5th International Conference On Computing, Communication, Control And Automation (ICCUBEA). IEEE, 2019. http://dx.doi.org/10.1109/iccubea47591.2019.9128369.
Testo completoVione, Engelbertus, e J. B. Budi Darmawan. "Performance of K-means in Hadoop Using MapReduce Programming Model". In International Conference of Science and Technology for the Internet of Things. EAI, 2019. http://dx.doi.org/10.4108/eai.19-10-2018.2282545.
Testo completoZhang, Fan, Qutaibah M. Malluhi e Tamer M. Elsyed. "ConMR: Concurrent MapReduce Programming Model for Large Scale Shared-Data Applications". In 2013 42nd International Conference on Parallel Processing (ICPP). IEEE, 2013. http://dx.doi.org/10.1109/icpp.2013.134.
Testo completo