Letteratura scientifica selezionata sul tema "Mapping class subgroups"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Mapping class subgroups".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Mapping class subgroups"
Matsuzaki, Katsuhiko. "Polycyclic quasiconformal mapping class subgroups". Pacific Journal of Mathematics 251, n. 2 (3 giugno 2011): 361–74. http://dx.doi.org/10.2140/pjm.2011.251.361.
Testo completoClay, Matt, Johanna Mangahas e Dan Margalit. "Right-angled Artin groups as normal subgroups of mapping class groups". Compositio Mathematica 157, n. 8 (27 luglio 2021): 1807–52. http://dx.doi.org/10.1112/s0010437x21007417.
Testo completoCalegari, Danny, e Lvzhou Chen. "Normal subgroups of big mapping class groups". Transactions of the American Mathematical Society, Series B 9, n. 30 (19 ottobre 2022): 957–76. http://dx.doi.org/10.1090/btran/108.
Testo completoKim, Heejoung. "Stable subgroups and Morse subgroups in mapping class groups". International Journal of Algebra and Computation 29, n. 05 (8 luglio 2019): 893–903. http://dx.doi.org/10.1142/s0218196719500346.
Testo completoLeininger, Christopher J., e D. B. McReynolds. "Separable subgroups of mapping class groups". Topology and its Applications 154, n. 1 (gennaio 2007): 1–10. http://dx.doi.org/10.1016/j.topol.2006.03.013.
Testo completoBavard, Juliette, Spencer Dowdall e Kasra Rafi. "Isomorphisms Between Big Mapping Class Groups". International Mathematics Research Notices 2020, n. 10 (25 maggio 2018): 3084–99. http://dx.doi.org/10.1093/imrn/rny093.
Testo completoFarb, Benson, e Lee Mosher. "Convex cocompact subgroups of mapping class groups". Geometry & Topology 6, n. 1 (14 marzo 2002): 91–152. http://dx.doi.org/10.2140/gt.2002.6.91.
Testo completoBerrick, A. J., V. Gebhardt e L. Paris. "Finite index subgroups of mapping class groups". Proceedings of the London Mathematical Society 108, n. 3 (5 agosto 2013): 575–99. http://dx.doi.org/10.1112/plms/pdt022.
Testo completoAnderson, James W., Javier Aramayona e Kenneth J. Shackleton. "Free subgroups of surface mapping class groups". Conformal Geometry and Dynamics of the American Mathematical Society 11, n. 04 (15 marzo 2007): 44–55. http://dx.doi.org/10.1090/s1088-4173-07-00156-7.
Testo completoFranks, John, e Kamlesh Parwani. "Zero entropy subgroups of mapping class groups". Geometriae Dedicata 186, n. 1 (18 ottobre 2016): 27–38. http://dx.doi.org/10.1007/s10711-016-0178-9.
Testo completoTesi sul tema "Mapping class subgroups"
McLeay, Alan. "Subgroups of mapping class groups and braid groups". Thesis, University of Glasgow, 2018. http://theses.gla.ac.uk/9075/.
Testo completoGekhtman, Ilya. "Dynamics of convex cocompact subgroups of mapping class groups". Thesis, The University of Chicago, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3628078.
Testo completoGiven a convex cocompact subgroup G < Mod(S), and points x, y ∈ Teich(S) we obtain asymptotic formulas as R → ∞ 1 of |BR(|x ) [special character omitted] Gy| as well as the number of conjugacy classes of pseudo-Anosov elements in G of dilatation at most R. We do this by developing an analogue of Patterson-Sullivan theory for the action of G on PMF.
Hope, Graham John. "Realisation of Brown subgroups and p-periodicity of mapping class groups". Thesis, University of Oxford, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.442733.
Testo completoSaadi, Fayssal. "Dynamique sur les espaces de modules". Electronic Thesis or Diss., Lyon, École normale supérieure, 2024. http://www.theses.fr/2024ENSL0039.
Testo completoIn this thesis, we are interested in the dynamics of the mapping class subgroups on the U(2) character variety. More precisely, we deal with ergodicity questions of a subgroup G of the mapping class group Mod(g,n) of a compact surface S(g,n) of genus g and n boundary components. These questions were naturally raised after Goldman's proof of the ergodicity of mapping class groups on the SU(2)-character variety. The first general result in this direction is due to Funar and Marché by showing that the first Johnson subgroups act ergodically on the character variety, for any closed surfaces S(g). On the other hand, Brown showed the existence of an elliptic fixed point (or a double elliptic fixed point) for any subgroup generated by a pseudo-Anosov element on the punctured torus S(1,1). This led to the proof of the non-ergodicity of such subgroups by Forni, Goldman, Lawton, and Mateus by applying KAM theory. In the first part of the thesis, we study the natural dynamics of the moduli space of spherical triangles on the 2-sphere relating these dynamics to the dynamics of the mapping class group on the SU(2)-character variety of the punctured torus.The second part is devoted to the study of the existence of elliptic fixed points for pseudo-Anosov homeomorphisms on the character varieties of punctured surfaces S(g,n), where g is 0 or 1. By showing that near any relative character variety of the once punctured torus, for a set of positive measure and dense of levels k, there exists a family of pseudo-Anosov elements that do not act ergodically on that level, in the case of the punctured torus S(1,1). A similar result holds for a set of parameters B in the case of the four-punctured sphere S(0,4). Then these results can be combined to construct a family of pseudo-Anosov elements on the twice-punctured torus S(1,2) that admit an elliptic fixed point.We discuss then the action of a group G generated by Dehn-twist along a pair of filling multi-curves or along a family of filling curves on S(g). We show in this part that there exist two filling multi-curves on the surface of genus two S(2) whose associated Dehn twists generate a group G acting non-ergodically on representation variety by finding explicit invariant rational functions. Similarly, We found invariant rational functions of a subgroup G generated by Dehn-twists along a family of filling loops on the character variety of the non-orientable surface of genus 4
Cumplido, Cabello María. "Sous-groupes paraboliques et généricité dans les groupes d'Artin-Tits de type sphérique". Thesis, Rennes 1, 2018. http://www.theses.fr/2018REN1S022/document.
Testo completoIn the first part of this thesis we study the genericity conjecture: In the Cayley graph of the mapping class group of a closed surface we look at a ball of large radius centered on the identity vertex, and at the proportion of pseudo-Anosov vertices among the vertices in this ball. The genericity conjecture states that this proportion should tend to one as the radius tends to infinity. We prove that it stays bounded away from zero and prove similar results for a large class of subgroups of the mapping class group. We also present analogous results for Artin--Tits groups of spherical type, knowing that in this case being pseudo-Anosov is analogous to being a loxodromically acting element. In the second part we provide results about parabolic subgroups of Artin-Tits groups of spherical type: The minimal standardizer of a curve on a punctured disk is the minimal positive braid that transforms it into a round curve. We give an algorithm to compute it in a geometrical way. Then, we generalize this problem algebraically to parabolic subgroups of Artin--Tits groups of spherical type. We also show that the intersection of two parabolic subgroups is a parabolic subgroup and that the set of parabolic subgroups forms a lattice with respect to inclusion. Finally, we define the simplicial complex of irreducible parabolic subgroups, and we propose it as the analogue of the curve complex for mapping class groups
McNeill, Reagin. "A new filtration of the Magnus kernel". Thesis, 2013. http://hdl.handle.net/1911/72006.
Testo completoLibri sul tema "Mapping class subgroups"
Wootton, Aaron, S. Broughton e Jennifer Paulhus, a cura di. Automorphisms of Riemann Surfaces, Subgroups of Mapping Class Groups and Related Topics. Providence, Rhode Island: American Mathematical Society, 2022. http://dx.doi.org/10.1090/conm/776.
Testo completoBridson, Martin R. Cube Complexes, Subgroups of Mapping Class Groups and Nilpotent Genus. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198784913.003.0003.
Testo completoPaulhus, Jennifer, Aaron Wootton e S. Allen Broughton. Automorphisms of Riemann Surfaces, Subgroups of Mapping Class Groups and Related Topics. American Mathematical Society, 2022.
Cerca il testo completoFarb, Benson, e Dan Margalit. Torsion. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691147949.003.0008.
Testo completoCapitoli di libri sul tema "Mapping class subgroups"
Gilman, Jane. "CHARACTERIZATION OF FINITE SUBGROUPS OF THE MAPPING-CLASS GROUP". In Combinatorial Group Theory and Topology. (AM-111), a cura di S. M. Gersten e John R. Stallings, 433–42. Princeton: Princeton University Press, 1987. http://dx.doi.org/10.1515/9781400882083-021.
Testo completoBridson, Martin. "Cube complexes, subgroups of mapping class groups, and nilpotent genus". In Geometric Group Theory, 379–99. Providence, Rhode Island: American Mathematical Society, 2014. http://dx.doi.org/10.1090/pcms/021/11.
Testo completoPutman, Andrew. "The Torelli group and congruence subgroups of the mapping class group". In Moduli Spaces of Riemann Surfaces, 169–96. Providence, Rhode Island: American Mathematical Society, 2013. http://dx.doi.org/10.1090/pcms/020/06.
Testo completoMosher, Lee. "Schottky Subgroups of Mapping Class Groups and the Geometry of Surface-by-Free Groups". In Rigidity in Dynamics and Geometry, 309–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04743-9_16.
Testo completo"The automorphism group of a free group is not subgroup separable". In Knots, Braids, and Mapping Class Groups—Papers Dedicated to Joan S. Birman, 23–27. Providence, Rhode Island: American Mathematical Society, 2001. http://dx.doi.org/10.1090/amsip/024/02.
Testo completo