Letteratura scientifica selezionata sul tema "Mapping class subgroups"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Mapping class subgroups".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Articoli di riviste sul tema "Mapping class subgroups"

1

Matsuzaki, Katsuhiko. "Polycyclic quasiconformal mapping class subgroups." Pacific Journal of Mathematics 251, no. 2 (2011): 361–74. http://dx.doi.org/10.2140/pjm.2011.251.361.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Clay, Matt, Johanna Mangahas, and Dan Margalit. "Right-angled Artin groups as normal subgroups of mapping class groups." Compositio Mathematica 157, no. 8 (2021): 1807–52. http://dx.doi.org/10.1112/s0010437x21007417.

Testo completo
Abstract (sommario):
We construct the first examples of normal subgroups of mapping class groups that are isomorphic to non-free right-angled Artin groups. Our construction also gives normal, non-free right-angled Artin subgroups of other groups, such as braid groups and pure braid groups, as well as many subgroups of the mapping class group, such as the Torelli subgroup. Our work recovers and generalizes the seminal result of Dahmani–Guirardel–Osin, which gives free, purely pseudo-Anosov normal subgroups of mapping class groups. We give two applications of our methods: (1) we produce an explicit proper normal sub
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Calegari, Danny, and Lvzhou Chen. "Normal subgroups of big mapping class groups." Transactions of the American Mathematical Society, Series B 9, no. 30 (2022): 957–76. http://dx.doi.org/10.1090/btran/108.

Testo completo
Abstract (sommario):
Let S S be a surface and let Mod ⁡ ( S , K ) \operatorname {Mod}(S,K) be the mapping class group of S S permuting a Cantor subset K ⊂ S K \subset S . We prove two structure theorems for normal subgroups of Mod ⁡ ( S , K ) \operatorname {Mod}(S,K) . (Purity:) if S S has finite type, every normal subgroup of Mod ⁡ ( S , K ) \operatorname {Mod}(S,K) either contains the kernel of the forgetful map to the mapping class group of S S , or it is ‘pure’ — i.e. it fixes the Cantor set pointwise. (Inertia:) for any n n element subset Q Q of the Cantor set, there is a forgetful map from the pure subgroup
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Kim, Heejoung. "Stable subgroups and Morse subgroups in mapping class groups." International Journal of Algebra and Computation 29, no. 05 (2019): 893–903. http://dx.doi.org/10.1142/s0218196719500346.

Testo completo
Abstract (sommario):
For a finitely generated group, there are two recent generalizations of the notion of a quasiconvex subgroup of a word-hyperbolic group, namely a stable subgroup and a Morse or strongly quasiconvex subgroup. Durham and Taylor [M. Durham and S. Taylor, Convex cocompactness and stability in mapping class groups, Algebr. Geom. Topol. 15(5) (2015) 2839–2859] defined stability and proved stability is equivalent to convex cocompactness in mapping class groups. Another natural generalization of quasiconvexity is given by the notion of a Morse or strongly quasiconvex subgroup of a finitely generated g
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Leininger, Christopher J., and D. B. McReynolds. "Separable subgroups of mapping class groups." Topology and its Applications 154, no. 1 (2007): 1–10. http://dx.doi.org/10.1016/j.topol.2006.03.013.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Bavard, Juliette, Spencer Dowdall, and Kasra Rafi. "Isomorphisms Between Big Mapping Class Groups." International Mathematics Research Notices 2020, no. 10 (2018): 3084–99. http://dx.doi.org/10.1093/imrn/rny093.

Testo completo
Abstract (sommario):
Abstract We show that any isomorphism between mapping class groups of orientable infinite-type surfaces is induced by a homeomorphism between the surfaces. Our argument additionally applies to automorphisms between finite-index subgroups of these “big” mapping class groups and shows that each finite-index subgroup has finite outer automorphism group. As a key ingredient, we prove that all simplicial automorphisms between curve complexes of infinite-type orientable surfaces are induced by homeomorphisms.
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Farb, Benson, and Lee Mosher. "Convex cocompact subgroups of mapping class groups." Geometry & Topology 6, no. 1 (2002): 91–152. http://dx.doi.org/10.2140/gt.2002.6.91.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Berrick, A. J., V. Gebhardt, and L. Paris. "Finite index subgroups of mapping class groups." Proceedings of the London Mathematical Society 108, no. 3 (2013): 575–99. http://dx.doi.org/10.1112/plms/pdt022.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Anderson, James W., Javier Aramayona, and Kenneth J. Shackleton. "Free subgroups of surface mapping class groups." Conformal Geometry and Dynamics of the American Mathematical Society 11, no. 04 (2007): 44–55. http://dx.doi.org/10.1090/s1088-4173-07-00156-7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Franks, John, and Kamlesh Parwani. "Zero entropy subgroups of mapping class groups." Geometriae Dedicata 186, no. 1 (2016): 27–38. http://dx.doi.org/10.1007/s10711-016-0178-9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Più fonti
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!