Letteratura scientifica selezionata sul tema "Mandelbrot sets"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Mandelbrot sets".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Mandelbrot sets"
LIU, XIANG-DONG, ZHI-JIE LI, XUE-YE ANG e JIN-HAI ZHANG. "MANDELBROT AND JULIA SETS OF ONE-PARAMETER RATIONAL FUNCTION FAMILIES ASSOCIATED WITH NEWTON'S METHOD". Fractals 18, n. 02 (giugno 2010): 255–63. http://dx.doi.org/10.1142/s0218348x10004841.
Testo completoMu, Beining. "Fuzzy Julia Sets and Fuzzy Superior Julia Sets". Highlights in Science, Engineering and Technology 72 (15 dicembre 2023): 375–80. http://dx.doi.org/10.54097/5c5hp748.
Testo completoJha, Ketan, e Mamta Rani. "Control of Dynamic Noise in Transcendental Julia and Mandelbrot Sets by Superior Iteration Method". International Journal of Natural Computing Research 7, n. 2 (aprile 2018): 48–59. http://dx.doi.org/10.4018/ijncr.2018040104.
Testo completoDanca, Marius-F. "Mandelbrot Set as a Particular Julia Set of Fractional Order, Equipotential Lines and External Rays of Mandelbrot and Julia Sets of Fractional Order". Fractal and Fractional 8, n. 1 (19 gennaio 2024): 69. http://dx.doi.org/10.3390/fractalfract8010069.
Testo completoTassaddiq, Asifa, Muhammad Tanveer, Muhammad Azhar, Waqas Nazeer e Sania Qureshi. "A Four Step Feedback Iteration and Its Applications in Fractals". Fractal and Fractional 6, n. 11 (9 novembre 2022): 662. http://dx.doi.org/10.3390/fractalfract6110662.
Testo completoYan, De Jun, Xiao Dan Wei, Hong Peng Zhang, Nan Jiang e Xiang Dong Liu. "Fractal Structures of General Mandelbrot Sets and Julia Sets Generated from Complex Non-Analytic Iteration Fm(z)=z¯m+c". Applied Mechanics and Materials 347-350 (agosto 2013): 3019–23. http://dx.doi.org/10.4028/www.scientific.net/amm.347-350.3019.
Testo completoKOZMA, ROBERT T., e ROBERT L. DEVANEY. "Julia sets converging to filled quadratic Julia sets". Ergodic Theory and Dynamical Systems 34, n. 1 (21 agosto 2012): 171–84. http://dx.doi.org/10.1017/etds.2012.115.
Testo completoAl-Salami, Hassanein Q. "Some Properties of the Mandelbrot Sets M(Q_α)". JOURNAL OF UNIVERSITY OF BABYLON for Pure and Applied Sciences 31, n. 2 (29 giugno 2023): 263–69. http://dx.doi.org/10.29196/jubpas.v31i2.4683.
Testo completoSekovanov, Valeriy S., Larisa B. Rybina e Kseniya Yu Strunkina. "The study of the frames of Mandelbrot sets of polynomials of the second degree as a means of developing the originality of students' thinking". Vestnik Kostroma State University. Series: Pedagogy. Psychology. Sociokinetics, n. 4 (2019): 193–99. http://dx.doi.org/10.34216/2073-1426-2019-25-4-193-199.
Testo completoWang, Feng Ying, Li Ming Du e Zi Yang Han. "The Construction for Generalized Mandelbrot Sets of the Frieze Group". Advanced Materials Research 756-759 (settembre 2013): 2562–66. http://dx.doi.org/10.4028/www.scientific.net/amr.756-759.2562.
Testo completoTesi sul tema "Mandelbrot sets"
Tingen, Larry L. "The Julia and Mandelbrot sets for the Hurwitz zeta function". View electronic thesis (PDF), 2009. http://dl.uncw.edu/etd/2009-3/tingenl/larrytingen.pdf.
Testo completoJones, Rafe. "Galois martingales and the hyperbolic subset of the p-adic Mandelbrot set /". View online version; access limited to Brown University users, 2005. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:3174623.
Testo completoTolmie, Julie. "Visualisation, navigation and mathematical perception : a visual notation for rational numbers mod 1". View thesis entry in Australian Digital Theses Program, 2000. http://thesis.anu.edu.au/public/adt-ANU20020313.101505/index.html.
Testo completoPoirier, Schmitz Alfredo. "Invariant measures on polynomial quadratic Julia sets with no interior". Pontificia Universidad Católica del Perú, 2014. http://repositorio.pucp.edu.pe/index/handle/123456789/96022.
Testo completoEn este artículo caracterizamos medidas invariantes sobre conjuntos de Julia sin interior asociados con polinomios cuadráticos. Probamos que más allá de la medida armónica —la única par e invariante—, el resto son generadas por su parte impar.
Kuo, Li-Feng, e 郭立峰. "Mandelbrot Sets, Julia Sets and Their Algorithms". Thesis, 2019. http://ndltd.ncl.edu.tw/handle/6n28d7.
Testo completo國立中央大學
數學系
107
In this thesis, we survey the big theme of fractals - Mandelbrot sets. We start to study Julia sets before study Mandelbrot sets, and the goal is generating figures of fractals and applying to arts. Hence, we introduce the definition and properties of Julia sets firstly, and use this theory to arrange some useful algorithms for generating the figures of Julia sets. After we survey Julia sets, we can study Mandelbrot sets, since the definition of Mandelbrot sets is all of the points such that the Julia set is onnected. However, we obtain the obstacle when generating andelbrot sets, that is, how to check the Julia set is connected or not? The answer of this question is - the fundamental theorem of Mandelbrot sets, we can generate the figures of Mandelbrot sets by this theorem. Finally, we give some examples of Mandelbrot sets and Julia sets, and introduce 3-dimensional Mandelbrot sets and Julia sets.
Fitzgibbon, Elizabeth Laura. "Rational maps: the structure of Julia sets from accessible Mandelbrot sets". Thesis, 2014. https://hdl.handle.net/2144/15111.
Testo completoHannah, Walter. "Internal rays of the Mandelbrot set". Thesis, 2006. http://www.ithaca.edu/hs/depts/math/docs/theses/whannahthesis.pdf.
Testo completoLauber, Arnd. "On the Stability of Julia Sets of Functions having Baker Domains". Doctoral thesis, 2004. http://hdl.handle.net/11858/00-1735-0000-0006-B3DE-F.
Testo completoLibri sul tema "Mandelbrot sets"
Mandelbrot, Benoit B. Fractals and chaos: The Mandelbrot set and beyond. New York, NY: Springer, 2004.
Cerca il testo completoTomboulian, Sherryl. Indirect addressing and load balancing for faster solution to Mandelbrot Set on SIMD architectures. Hampton, Va: ICASE, 1989.
Cerca il testo completoBanaś, Marian. Analiza teoretyczna i badania właściwości zawiesin nieziarnistych w zastosowaniu do projektowsnia i eksploatacji wielostrumieniowych urządzeń sedymentacyjnych: Theoretical analysis and investigations of the properties of the non-grainy suspensions in terms to design and use of the lamella settling devices. Kraków: Wydawnictwa AGH, 2012.
Cerca il testo completoDevaney, Robert, a cura di. Complex Dynamical Systems: The Mathematics Behind the Mandelbrot and Julia Sets. Providence, Rhode Island: American Mathematical Society, 1995. http://dx.doi.org/10.1090/psapm/049.
Testo completo1948-, Devaney Robert L., e Branner Bodil, a cura di. Complex dynamical systems: The mathematics behind the Mandelbrot and Julia sets. Providence, R.I: American Mathematical Society, 1994.
Cerca il testo completo1945-, Stewart Ian, e Clarke Arthur Charles 1917-, a cura di. The colours of infinity: The beauty and power of fractals. [S.l.]: Clear Books, 2004.
Cerca il testo completoLesmoir-Gordon, Nigel. The colours of infinity: The beauty and power of fractals. London: Springer Verlag, 2010.
Cerca il testo completo1945-, Kauffman Louis H., e Sandin Daniel J, a cura di. Hypercomplex iterations: Distance estimation and higher dimensional fractals. River Edge, NJ: World Scientific, 2002.
Cerca il testo completoMilnor, John W. Dynamical systems (1984-2012). A cura di Bonifant Araceli 1963-. Providence, Rhode Island: American Mathematical Society, 2014.
Cerca il testo completoUniversal Mandelbrot Set: Beginning of the Story. World Scientific Publishing Co Pte Ltd, 2006.
Cerca il testo completoCapitoli di libri sul tema "Mandelbrot sets"
Agarwal, Ravi P., Kanishka Perera e Sandra Pinelas. "Julia and Mandelbrot Sets". In An Introduction to Complex Analysis, 316–20. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4614-0195-7_49.
Testo completoKorsch, H. J., e H. J. Jodl. "Mandelbrot and Julia Sets". In Chaos, 227–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03866-6_11.
Testo completoKorsch, H. J., e H. J. Jodl. "Mandelbrot and Julia Sets". In Chaos, 227–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-662-02991-6_11.
Testo completoDouady, Adrien. "Julia Sets and the Mandelbrot Set". In The Beauty of Fractals, 161–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-61717-1_13.
Testo completoReeve, Dominic E. "Mandelbrot, Julia Sets and Nonlinear Mappings". In Fractals and Chaos, 35–42. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-3034-2_3.
Testo completoPeitgen, Heinz-Otto, Hartmut Jürgens e Dietmar Saupe. "The Mandelbrot Set: Ordering the Julia Sets". In Fractals for the Classroom, 415–73. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-4406-6_8.
Testo completoPeitgen, Heinz-Otto, Hartmut Jürgens e Dietmar Saupe. "The Mandelbrot Set: Ordering the Julia Sets". In Chaos and Fractals, 841–901. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4757-4740-9_15.
Testo completoPeitgen, Heinz-Otto, Hartmut Jürgens e Dietmar Saupe. "The Mandelbrot Set: Ordering the Julia Sets". In Chaos and Fractals, 783–837. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/0-387-21823-8_15.
Testo completoMcClure, Mark. "Complex Dynamics:Julia Sets and the Mandelbrot Set". In Mathematica in Action, 277–300. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-0-387-75477-2_12.
Testo completoOchkov, Valery, Alan Stevens e Anton Tikhonov. "Iterations and Fractal Sets of Mandelbrot and Julia". In STEM Problems with Mathcad and Python, 263–91. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003228356-14.
Testo completoAtti di convegni sul tema "Mandelbrot sets"
Kumar, Suthikshn. "Public Key Cryptographic System Using Mandelbrot Sets". In MILCOM 2006. IEEE, 2006. http://dx.doi.org/10.1109/milcom.2006.302396.
Testo completoDejun, Yan, Yang Rijing, Xin Huijie e Zheng Jiangchao. "Generalized Mandelbrot Sets and Julia Sets for Non-analytic Complex Maps". In 2010 International Workshop on Chaos-Fractals Theories and Applications (IWCFTA). IEEE, 2010. http://dx.doi.org/10.1109/iwcfta.2010.42.
Testo completoYan, Dejun, Junxing Zhang, Nan Jiang e Lidong Wang. "General Mandelbrot Sets and Julia Sets Generated from Non-analytic Complex Iteration ⨍m(z)=z^n+c". In 2009 International Workshop on Chaos-Fractals Theories and Applications (IWCFTA 2009). IEEE, 2009. http://dx.doi.org/10.1109/iwcfta.2009.89.
Testo completoSeytov, Sh J., N. B. Narziyev, A. I. Eshniyozov e S. N. Nishonov. "The algorithms for developing computer programs for the sets of Julia and Mandelbrot". In PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: (PTLICISIWS-2022). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0145456.
Testo completoYan, Dejun, Xiaodan Wei, Hongpeng Zhang, Nan Jiang e Xiangdong Liu. "Fractal Structures of General Mandelbrot Sets and Julia Sets Generated From Complex Non-Analytic Iteration Fm(Z)=Zm+c". In 2nd International Symposium on Computer, Communication, Control and Automation. Paris, France: Atlantis Press, 2013. http://dx.doi.org/10.2991/isccca.2013.42.
Testo completoGanikhodzhayev, Rasul, e Shavkat Seytov. "An analytical description of mandelbrot and Julia sets for some multi-dimensional cubic mappings". In INTERNATIONAL UZBEKISTAN-MALAYSIA CONFERENCE ON “COMPUTATIONAL MODELS AND TECHNOLOGIES (CMT2020)”: CMT2020. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0058341.
Testo completoDawkins, Jeremy J., David M. Bevly e Robert L. Jackson. "Multiscale Terrain Characterization Using Fourier and Wavelet Transforms for Unmanned Ground Vehicles". In ASME 2009 Dynamic Systems and Control Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/dscc2009-2718.
Testo completoShahinpoor, Mohsen. "An Introduction to Smart Fractal Structures and Mechanisms". In ASME 1993 Design Technical Conferences. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/detc1993-0160.
Testo completoMichopoulos, John G., e Athanasios Iliopoulos. "High Dimensional Full Inverse Characterization of Fractal Volumes". In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-71050.
Testo completoMichopoulos, John G., e Athanasios Iliopoulos. "Complete High Dimensional Inverse Characterization of Fractal Surfaces". In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-47784.
Testo completo