Tesi sul tema "Magnetism"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 saggi (tesi di laurea o di dottorato) per l'attività di ricerca sul tema "Magnetism".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi le tesi di molte aree scientifiche e compila una bibliografia corretta.
Barrera, Angela Dayana Barra. "Estudo do acoplamento de troca no sistema NiFe/FeMn e efeitos da irradiação iônica". Universidade de São Paulo, 2005. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-12112013-095231/.
Testo completoThe aim of the present work was to produce and to study magnetic and structural properties of Ni81Fe19/Fe50Mn50 thin films. These films were produced by DC magnetron sputtering. We began our study on Si/buffer/Ni81Fe19(30nm)/Fe50Mn50(15nm)/Ta(5nm) films, using Si(100) or Si(111) substrates and Cu or Ta buffer layer, in order to determine the best conditions for obtaining a good exchange coupling between magnetic bilayers. After that, we studied the magnetic properties of these films relative to magnetics layers thickness. The samples studied were Si(100)/Cu (20mn)/Ni81Fe19 (tFM mn)/Fe50Mn50 (tAFM nm)/Ta(3nm), with tFM varying between 5 to 53run, with fixed tAFM of 10mn, and vice versa, namely with fixed tFM and varying tAFM. Finally, we studied the effect of He and Ne ionic irradiation on the exchange-coupling interaction. The thin films were characterized by vibrating sample magnetometry, X-ray diffraction, X-ray reflectometry, X-ray absorption spectroscopy at the Mn K edge, and near field optical microscopy (SNOM). The magnetic characterization of all Si/buffer/NiFe/FeMn/Ta films shows that pristine films present exchange coupling. However, the exchange-coupling interaction needs to be inducing through field cooling procedure for Si/buffer/FeMn/NiFe/Ta films. X ray diffraction measurements show that these films presents FCC crystal structure, plus (111) and (200) crystal textures when the magnetic layers are deposited on Cu buffer layer, and only the (111) crystal texture when the layers are deposited on Ta. On other hand, the magnetic measurement point out that the Cu buffer samples presents the best magnetic properties with high values for Hexc and low values of coercive field. The EXAFS analysis of films with different buffers points out that samples deposited on Ta and directly on silicon present a larger local disorder than samples deposited on Cu. The magnetic measurements of the ionic irradiated films showed an increase of Hexc values for samples irradiated at room temperature with different He rates, compared with the same samples before irradiation. On the other hand, for Ne irradiated samples the exchange field decreased drastically. We observed irradiation no changes on the exchange field values from near field optical microscopy (SNOM) measurements at different areas of samples before and after ionic. These results point out that, even if we are characterizing very small areas of the samples, the exchange field represents the average behavior of the exchange interaction in these areas.
Moya, Álvarez Carlos. "Structure versus Magnetism in Magnetic Nanoparticles". Doctoral thesis, Universitat de Barcelona, 2015. http://hdl.handle.net/10803/384539.
Testo completoBode, Peter Jan. "Ultrathin magnetic structures and interface magnetism". Thesis, University of Cambridge, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.614245.
Testo completoBarbosa, Andreia Guedes Santiago. "Estudo de microestruturas magnéticas por microscopia de força magnética". CNEN - Centro de Desenvolvimento da Tecnologia Nuclear, Belo Horizonte, 2010. http://www.bdtd.cdtn.br//tde_busca/arquivo.php?codArquivo=132.
Testo completoA manipulação e o controle das propriedades magnéticas de materiais com pequenas dimensões tem atraído interesse crescente nos últimos anos. Para sistemas magnéticos micrométricos ou submicrométricos, diferentes configurações magnéticas são energeticamente acessíveis. Vórtices magnéticos merecem destaque entre essas configurações e figuram em um grande número de pesquisas tecnológicas que vão desde o armazenamento magnético (VMRAM) até a biofuncionalização de estruturas para o tratamento do câncer. Em uma configuração de vórtice magnético, a energia magnetostática é minimizada por uma configuração de caminho fechado no plano do filme e uma região central com magnetização perpendicular à superfície. A quiralidade (sentido de rotação da magnetização no plano) e a polarização (direção da magnetização na região central) são os dois principais parâmetros que caracterizam um vórtice magnético. Apesar do esforço recente, ainda não se alcançou um entendimento detalhado que permita a manipulação controlada dessas características. Um aspecto importante para a aplicação tecnológica das estruturas de vórtice magnético é a uniformidade e a reprodutibilidade do comportamento de inversão de magnetização da partícula. O tamanho do núcleo do vórtice e o valor da magnetização, fatores que dependem fortemente da anisotropia do sistema, são aspectos relevantes a serem considerados para que as aplicações destas estruturas magnéticas se tornem realidade. Neste trabalho, arranjos regulares de discos multicamadas Co/Pt com diâmetro de 1 e 2 μm e pemalloy com diâmetro na faixa de 5 a 17 μm, ambos com espessura nanométrica, foram investigados por Microscopia de força magnética (MFM) e magnetometria (VSM e PPMS). Um dos objetivos foi investigar a correlação entre a anisotropia magnética nas multicamadas e o tamanho do núcleo do vórtice magnético. Os resultados obtidos demonstraram a presença de estados de vórtice magnético em algumas das amostras estudadas, em função do diâmetro do disco. Além disso, foram estudadas propriedades magnéticas da configuração de vórtices magnéticos desde a nucleação à aniquilação e efeitos de variação de dimensões de disco (diâmetro e espessura) e anisotropia magnética (multicamadas Co/Pt).
The manipulation and control of magnetic properties in size reduced materials have attracted a great interest in the last years. For micrometric or submicron magnetic structures different magnetic configurations are energetically accessible. Magnetic vortex noteworthy belongs to those configurations, and often represents the lowest energy configuration. Nowadays, it appears in a number of technological research ranging from the magnetic storage (VRAM) to the biofunctionalized microdisks for cancer treatment. In a magnetic vortex configuration, magnetostatic energy is minimized by in-plane closed flux domain structure and this curling magnetization turns out of the plane at the centre of the vortex structure. The chirality (direction of rotation of the in-plane magnetization) and polarization (up or down direction of the vortex core) are two topological features that characterize a magnetic vortex. In spite of the great effort on this matter, a controlled manipulation of magnetic vortex features was not reached. A critical aspect for the technological application of magnetic vortex structures is the uniformity and reproducibility of the reversal behavior of the particle magnetization. The vortex core size and the related value of its overall magnetization are also very relevant for the use of such magnetic structures. It is usually considered that the size of the vortex core depends on parameters such as anisotropy, thickness and diameter of the magnetic disk. In this work, regular arrays of Co/Pt multilayers disks with diameter of 1 and 2 μm and pemalloy disks with diameter in the range 5 -17 μm, both nanometer-thick, were investigated by Magnetic Force Microscopy (MFM) and magnetization measurements (VSM and PPMS). The results show the existence of magnetic vortex states for the samples, depending on the disk diameter. Furthermore, it was investigated the magnetic properties of the magnetic vortex, since the nucleation to annihilation, and the effect of variation of disk dimensions (diameter and thickness) and magnetic anisotropy (Co/Pt multilayers).
Zhang, Wenxu. "Magnetism, Structure and their Interactions". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1215950409324-02446.
Testo completoPojar, Mariana. "Estudo das propriedades magnéticas de um objeto microestruturado através do SNOM-MO". Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-30032009-110159/.
Testo completoNanoscience and nanotechnology have become keywords for scientific development in most areas of research, including magnetism. For this reason, there is a strong demand for tools devoted to nano-scale characterization. The Magnetooptical Scanning Near Field Optical Microscope (SNOM-MO) falls in this context due to be a technique of microscopy with high spatial resolution and magnetic sensitivity, estimated to be DM = 2 x 10-12 emu. In contrast to traditional optical microscopes, SNOM deals with evanescent electromagnetic radiation and, consequently, the resolution is no longer limited by the Rayleigh criterion. The SNOM-MO is a powerful tool to obtain local magnetic information through differential susceptibility and local hysteresis loops. Using this last technique, an experimental micromagnetic mapping was made for the magnetization vector on a square amorphous CoFeSiBNb object. The experimental results obtained provided information about the two chiralities existing in its closure magnetic domain structure, whose behavior is determined mainly by the shape anisotropy. The study also showed that pinnings generated by defects on surface´s object exerted great influence on the dynamic of the magnetization vectors. Due to the large amount of local magnetic information, this kind of study becomes a potential background for the development of more accurate and complete theoretical models. The experimental results demonstrate resolution better than 125 nm. This study has allowed us to access intrinsic magnetic behaviors that motivated an interesting discussion about magnetic pinnings, rotation of magnetization, reversal magnetic fields and local anisotropy. In addition, also special attention was given to the optimization of instrumental technique in order to make the SNOM-MO a measurement instrument with nanometer resolution. Among these efforts we emphasize the production of tips by FIB technique and the introduction of a new optical system which has significantly contributed to a better control of polarization of light.
Nascimento, Ulisses Magalhães. "Preparação, caracterização e testes catalíticos de um fotocatalisador magnético (Fe3O4/TiO2) na degradação de um poluente-modelo: acid blue 9". Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/75/75132/tde-23042013-112144/.
Testo completoThe use of semiconductors for treating polluted waters and wastewaters is a promising environmental remediation technology, especially for organic pollutants. Among the several semiconductors that are also photocatalysts, TiO2 is extensively used for environmental application, due to its biological and chemical inertness, high oxidation power, low cost, and stability regarding corrosion. However, TiO2 also has some disadvantages, such as: it is only UV-excited and requires an additional unit operation (e.g. filtration or centrifugation) for reuse purposes. In order to work around those limitations, a simple procedure for synthesizing a magnetic photocatalyst (Fe3O4/TiO2), with high specific surface area and good photocatalytic activity when compared to Evonik\'s TiO2 P25, was used. The photocatalyst was synthesized in a three-step procedure: (1) α-Fe2O3 particles were obtained, by precipitation, from FeCl3.6H2O 0.01 mol L-1, which underwent a forced acid hydrolysis at 100°C for 48 h; (2) α-Fe2O3/TiO2 particles were obtained, by heterocoagulation, of Ti(IV) oxide species on the α-Fe2O3, followed by calcination at 500°C for 2 h; and (3) The core/shell photocatalyst particles were obtained by calcination the α-Fe2O3/TiO2 particles at 400°C for 1 h under reducing atmosphere (H2). The photocatalytic activity of the synthesized material was assessed by the color removal of an Acid Blue 9 (C.I. 42090) dye solution. pH and catalyst dosage effects were estimated by a 22 factorial design. Fe3O4/TiO2 core/shell particles with specific surface area of 202 m2 g-1were obtained. They were easily separated from the reaction medium, in approximately 2 min, with the aid of a magnet. The photocatalyst absorbed radiation throughout the visible spectrum. The greatest color removal (54%) was achieved with pH 3.0, 1.0 g L-1 of photocatalyst, and 2 h of reaction.
Jaqueto, Plinio Francisco. "Magnetism of a speleothem from Midwest Brazil and paleoclimatic implications". Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/14/14132/tde-31052017-165938/.
Testo completoEsta tese fornece um estudo detalhado do magnetismo ambiental de espeleotemas. Este estudo é feito em uma estalagmite da caverna Pau D\'Alho (15 ° 12\'20 \"S, 56 ° 48\'41\" W), localizado em Rosário d\'Oeste, Mato Grosso, Brasil. Este espeleotema cresceu durante os últimos 1355 anos, com taxa média de crescimento de ~ 168 mm/ka e engloba dois eventos climáticos do Sistema de Monção Sul-americano (SMSA), a Anomalia Climática do Medieval (ACM) e a Pequena Idade do Gelo (PIG), eventos secos e molhados, respectivamente. Os experimentos de magnetismo de rocha incluem: magnetização remanecte isotermal (MRI), ciclos de histerese, magnetização remanente anisterética (MRA), desmagnetização térmica em três eixos, first order reversal curves (FORC) e experimentos de baixa temperatura. Os principais portadore magnéticos na estalagmite são magnetita e goethita, com uma proporção relativa quase constante. A magnetita tem coercividades entre 14-17 mT, e as suas propriedades magnéticas são semelhantes às produzidas por processos pedogênicos. As remanências magnéticas são amplamente correlacionadas com dados de isótopos de carbono e oxigênio durante o registro, sugerindo que a precipitação e a dinâmica do solo acima da caverna exerce um forte controle na entrada de minerais magnéticos no sistema de cavernas Pau d\'Alho. Períodos secos como o ACM estão associados a solos menos estáveis, que resultam em maiores fluxos de minerais detríticos carreados para o sistema de cavernas, ao passo que, inversamente, os períodos frios e chuvosos como a LIA estão associados a solos cobertos pela vegetação mais densa que são mais capazes de reter minerais pedogênicos de escala micrométrica, e, assim, diminuir os fluxos de minerais detríticos para o sistema de cavernas.
Ghannadzadeh, Saman. "Investigating magnetism and superconductivity using high magnetic fields". Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:4b78618e-89a3-424e-a673-59d363a2605d.
Testo completoFan, Yichun. "Optical Characterization of Magnetism in Magnetic/Nonmagnetic Heterostructures". W&M ScholarWorks, 2013. https://scholarworks.wm.edu/etd/1539623362.
Testo completoZhang, Wenxu. "Magnetism, Structure and their Interactions". Doctoral thesis, Technische Universität Dresden, 2007. https://tud.qucosa.de/id/qucosa%3A23720.
Testo completoPoole, A. L. "Magnetism in frustrated magnets revealed by neutron polarimetry". Thesis, University College London (University of London), 2011. http://discovery.ucl.ac.uk/1302402/.
Testo completoRiley, Melissa Alessandra. "The use of magnets in biomedical applications". Thesis, University of Birmingham, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364498.
Testo completoRadovanovic, Pavle V. "Synthesis, spectroscopy, and magnetism of diluted magnetic semiconductor nanocrystals /". Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/8494.
Testo completoRaanaei, Hossein. "Tailoring Properties of Materials at the Nanoscale". Doctoral thesis, Uppsala : Uppsala University, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-107425.
Testo completoFelton, Solveig. "Tunable Magnetic Properties of Transition Metal Compounds". Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-5939.
Testo completoHenderson, John. "SPIN QUANTUM DYNAMICS IN MOLECULAR MAGNETS". Doctoral diss., University of Central Florida, 2009. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3535.
Testo completoPh.D.
Department of Physics
Sciences
Physics PhD
DAMENTO, MICHAEL ANTHONY. "DETECTION OF MAGNETIZATION REVERSAL IN A NEODYMIUM-IRON-BORON MAGNET USING A HALL-EFFECT MICROPROBE". Diss., The University of Arizona, 1986. http://hdl.handle.net/10150/183945.
Testo completoLópez, Mir Laura. "Transport phenomena and magnetism in nanostructures of lanthanum manganitebased oxide thin films". Doctoral thesis, Universitat Autònoma de Barcelona, 2018. http://hdl.handle.net/10803/462765.
Testo completoLanthanum manganite-based oxides conform an extensive family of compounds deriving from LaMnO3: a perovskite with general formula ABO3. Its physical properties can be drastically modified by cation substitution. In this thesis we explore two compounds obtained by A-site and B-site substitutions. On the one hand, La2Co0.8Mn1.2O6 (LCMO), obtained by substitution of Mn by Co (B-site substitution), leads to a double perovskite structure with ferromagnetic insulating properties. On the other side, the La0.7Sr0.3MnO3 (LSMO) compound resulting from the partial substitution of La by Sr (A-site substitution) turns the material into a ferromagnetic half-metal. The development of techniques for the growth of oxide materials in the form of thin films ease their integration in semiconductors technology and enable the design of micro and nanoscale devices with potential in spintronics and non-volatile memory applications. Nowadays, there is an increasing interest in the study of double perovskite thin films combining ferromagnetic and insulating properties due to their relatively high transition temperature and their integration on top of other perovskite oxides. The implementation of ferromagnetic insulators (FM-I) as substitutes of ferromagnetic metal-based devices can lead to much higher switching eficiency and less dissipative current transport. For instance, ultrathin films of (FM-I) might be used as spin-selective active tunneling barriers acting as spin-filters. Therefore, the main objective of the first part of this thesis has been to give a comprehensive understanding of LCMO physical properties and propose a guide to potential applications. Firstly, we present a detailed study of the growth of the LCMO films as well as their structural and magnetic characterization. We demonstrate that we can obtain high quality thin films, with transition temperatures up to 230 K and with good cationic order despite a certain degree of off-stoichiometry. Then, we analyze magnetic anisotropy effects, focusing on the following aspects: i) the study of the appearance of strong perpendicular magnetic anisotropy (PMA) with large coercive and anisotropy fields, and ii) the relation of magnetic anisotropy strength and sign with lattice mismatches. In particular, we show that PMA appears for the tensile strain case while compressive strain produces in-plane easy axis. We also give a more detailed understanding of the origin of magnetic anisotropy using a simple atomistic model based on first-order perturbation theory calculations.We relate our predictions with X-ray magnetic circular dichroism (XMCD) experiments and evidence that magnetic anisotropy in LCMO has a magnetocrystalline origin due to the strong spin-orbit coupling of Co2+ ions. With the aim of integrating ferromagnetic insulating properties and PMA in a device, we have fabricated tunnel junctions using LCMO as a magnetically active barrier and have explored its spin-derived functionalities. We have found that the device provides high spin-filtering effciency (of almost 100% of spin-polarization) as well as anisotropic sensing and memory functionalities. This is, the strong straininduced PMA provokes a large difference between magnetoresistance curves measured with the magnetic field applied in the perpendicular or parallel directions, this phenomenon is the so called tunneling anisotropic magnetoresistance (TAMR). TAMR values as high as 20-30% have been found. Finally, we have proven that the device can be used as a magnetic memory as we can detect the existence of two nonvolatile resistive state that switches depending on the direction of the magnetic field used to write it. The last part of thesis presents results focused on the A-substituted manganite, LSMO, thin films. We show that growth instabilities can lead to the formation of double-terminated surfaces. Indeed, deviations from the ideal growth behaviour constitute a way to obtain spontaneously formed nanostructures with modulated local functional properties at the surface. The transport properties and the composition of these films have been analyzed by making use of scanning probe techniques and space-resolved photoemission electron microscopy, which are surface-sensitive techniques suitable to characterize properties at the nanoscale of this type of systems.
Lim, Joshua A. "The role of local versus itinerant magnetism : studies of dilute magnetic semiconductors and multi-k magnets". Thesis, University of Birmingham, 2013. http://etheses.bham.ac.uk//id/eprint/4639/.
Testo completoChakraborty, Arnab. "Magnetism of Nanocrystallized Amorphous Fe75B10Si15". Thesis, KTH, Materialvetenskap, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-107191.
Testo completoEdström, Alexander. "Theoretical and Computational Studies on the Physics of Applied Magnetism : Magnetocrystalline Anisotropy of Transition Metal Magnets and Magnetic Effects in Elastic Electron Scattering". Doctoral thesis, Uppsala universitet, Materialteori, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-304666.
Testo completoFelaktigt ISBN i den tryckta versionen: 9789155497149
Villuendas, Pellicero Diego. "Magnetic deflagration in Mn₁₂-ac and Nd₅Ge₃ : new techniques and phenomena". Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/396118.
Testo completoEl objetivo que persigue esta tesis es impulsar el estudio de las deflagraciones magnéti-cas gracias, por una parte al descubrimiento del fenómeno en un sistema nuevo y pro-metedor como es el compuesto intermetálico Nd5Ge3, y por otra a la presentación de un método nuevo de medición de las dependencias espacio-temporales de las mismas utilizando técnicas magneto-ópticas. Manteniendo el hilo conductor del fenómeno de las deflagraciones magnéticas, esta tesis doctoral se divide en dos partes. En la primera parte presento mis investigaciones en el estudio del sistema Mn12—ac. A partir de los tratamientos de los videos obtenidos se confirma la presencia de deflagraciones magnéticas. La segunda parte de la tesis está dedicada al compuesto intermetálico Nd5Ge3. Éste compuesto se trata de uno de los pocos sistemas en los que mediante un campo magnéti-co externo se induce espontáneamente un estado ferromagnético (FM) con gran irre-versibilidad proviniendo de un estado antiferromagnético (AFM). Además, los cambios magnéticos que experimenta el sistema, tanto dicha transición AFM—>FM como la in-versión de la magnetización en el estado FM, ocurren de forma muy abrupta, siendo también uno de los escasos sistemas que presenta esta propiedad. Dedico tres capítulos al estudio de sus propiedades magnéticas, térmicas y eléctri-cas, tanto estáticas como dinámicas. En esas medidas encuentro fenómenos interesantes, desde generación espontánea de voltaje durante las deflagraciones magnéticas, hasta la aparición de saltos espontáneos de la magnetización con el tiempo (manteniendo la tem-peratura y el campo magnético constantes), pasando por la obtención de términos de origen antiferromagnético en la dependencia térmica de la capacidad calorífica del estado ferromagnético saturado, o una magnetorresistencia gigante entre ambos estados, entre otros. En el sexto capítulo, las medidas experimentales confirman la existencia del fenómeno de la deflagración magnética en ambas fases, AFM y FM. La velocidad de propagación del frente obtenida en la teoría de deflagraciones se ajusta bien a los datos experimen-tales. Utilizando la bondad del ajuste, extrapolamos la velocidad teórica hacia campos magnéticos elevados y encontramos la posibilidad de que ésta iguale o supere la velocidad del sonido en el material. Lo más remarcable es que esta posible transición se observa en la extrapolación para campos menores de 50 kOe. Por lo que, en principio, reduciendo la temperatura podríamos ser capaces de obtener medidas de dicha transición. Sin em-bargo, el estudio de las deflagraciones espontáneas en función de la temperatura llevado a cabo en un criostato de dilución resultó un claro ejemplo de serendipia. En vez de alcanzar velocidades supersónicas, lo que encontré fueron unas discontinuidades de salto en los campos de deflagración espontánea no predichas. Por lo tanto, el capítulo pasa a enfocarse en su estudio, concluyendo que su origen está relacionado con propiedades intrínsecas del Nd5Ge3.
Quintana, Puebla Alberto. "Enhanced magnetoelectric effects in electrolyte-gated nanoporous metallic alloy and dense metal oxide films". Doctoral thesis, Universitat Autònoma de Barcelona, 2018. http://hdl.handle.net/10803/663838.
Testo completoThis Thesis covers the study of the magnetoelectric response in nanoporous metallic alloy and transition metal oxide dense films. The interfacial nature of magnetoelectric processes, independently of its origin, has limited its study to ultrathin film configurations (usually 1-2 nm). Here we propose a novel approach to overcome this thickness limitation, thus achieving magnetoelectric response in materials whose overall thickness is larger than 100 nm. To accomplish this, we have employed nanoporous materials, with pore walls and ligands of very few nanometers, which are characterized by a large surface to volume ratio. These materials have been synthesized by micelle assisted electrodeposition. Micelles get trapped during the electrodeposition process thus acting as a soft templating agent, allowing us to synthesize nanoporous copper-nickel alloy films with tunable composition and morphology. Voltage application has been performed through electrolyte-gating, taking advantage of the generation of an electrical double layer in aprotic organic electrolytes which helps to avoid spurious oxidation processes. This method allows for the application of electric fields as high as hundreds of MV/cm. Thanks to the high electric field achieved, together with the ultrahigh surface area of nanoporous materials, a 32 % reduction in the coercivity of a Cu25Ni75 nanoporous film has been achieved. Ab-initio simulations attribute this large effect to changes in the magnetic anisotropy energy due to charge accumulation in the sample|electrolyte interface. In a second approach, the voltage control of redox processes has been studied in aqueous electrolytes (1M NaOH). After positive bias application up to a 33 % reduction in the magnetization has been achieved in a Cu20Ni80 nanoporous sample thanks to the selective Cu oxidation. The controlled oxidation process resulted in an enriched Ni alloy which possesses a larger magnetic moment. Moreover, we have demonstrated the suitability of atomic layer deposition to conformally coat the nanoporous alloys, preserving the morphology and structure, thus setting the basis for future solid state applications. In the last part of this Thesis, it has been demonstrated that, upon electric field application, a ferromagnetic response arises in a paramagnetic single Co3O4 layer, at room temperature. The applied voltage promotes the ionic diffusion, resulting in oxygen rich and cobalt rich regions, being the latter the responsible of the induced magnetic signal. This experiment is one of the first evidences of ionic motion at room temperature without the assistance of oxygen buffer layers such as Gd2O3 or HfO2.
Brandl, Ana Lucia. "Propriedades magnéticas de sistemas nanocristalinos". [s.n.], 2004. http://repositorio.unicamp.br/jspui/handle/REPOSIP/278234.
Testo completoTese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin
Made available in DSpace on 2018-08-04T01:56:42Z (GMT). No. of bitstreams: 1 Brandl_AnaLucia_D.pdf: 5290468 bytes, checksum: 32290a7675f89cf9c2a2ea53be70c6fb (MD5) Previous issue date: 2004
Resumo: Sistemas magnéticos granulares são constituídos de pequenas partículas magnéticas imersas numa matriz não magnética. Essas partículas têm formas e tamanhos variados, eixos de anisotropia variados e orientados aleatoriamente e, dependendo do tipo de matriz (isolante ou condutora) e da concentração do material magnético, diferentes tipos de interações magnéticas podem estar presentes. Esses materiais apresentam diversas propriedades físicas interessantes, como magneto-resistência gigante e efeito Hall gigante. Devido à complexidade desses sistemas, a sua magnetização só pode ser calculada analiticamente em dois casos limites: quando a temperatura é zero (modelo Stoner-Wohlfarth) ou quando a temperatura é alta (modelo de Langevin). Embora o modelo de Langevin seja aplicado com bastante sucesso para temperaturas acima da temperatura de bloqueio média (TB) do sistema, mostramos nesse trabalho que os resultados podem ser enganosos, fornecendo parâmetros estruturais muito diferentes dos reais. Essas discrepâncias podem ser atribuídas a efeitos de interações magnéticas e a efeitos de anisotropia, ambos desconsiderados no formalismo de Langevin. Os principais resultados experimentais apresentados nesta dissertação foram obtidos de um conjunto de filmes granulares do tipo metal-isolante, com partículas nanocristalinas de Co imersas numa matriz amorfa de SiO2, fabricados por evaporação catódica. A caracterização magnética foi realizada através de medidas de magnetização em função do campo, susceptibilidade resfriada com e sem campo magnético aplicado e magnetização termo-remanente. A caracterizção estrutural foi realizada através de medidas de microscopia de transmissão de elétrons, difração de raio-x e espalhamento de raio-x a baixo ângulo
Abstract: Granular magnetic systems are formed by magnetic grains whose size is of the order of a few nanometers, embedded in a non-magnetic (insulating or metallic) matrix. These ultrafine particle systems present size, shape, and anisotropy distributions, besides randomly orientated easy directions. Magnetic interactions always exist, being stronger or weaker according to the volume concentration and the matrix type. These systems have shown interesting magnetotransport properties, as giant magnetoresistance and giant Hall effect. Owing to the inherent complexity of the nanostructure, the magnetization can be analytically calculated only in two limiting cases: when T = 0 (Stoner-Wohlfarth model) or for high temperatures (Langevin model). The Langevin model presents very good results when applied at temperatures higher than the mean blocking temperature (TB) of the system. However this adequacy can be just apparent: the obtained structural parameters are very different from the real ones, as we show in this work. These discrepancies can be attributed to magnetic interactions andanisotropy effects, both unconsidered in the Langevin formalism. The main results presented in this thesis were obtained from a set of metal-insulator granular films, composed of Co nanoparticles immersed in an amorphous SiO2 matrix. The films were produced by magnetron co-sputtering. The magnetic characterization was perfomed with magnetization loops, zero-field cooled and field cooled susceptibilities, and thermoremanent magnetization. The microstructural characterization was done by transmission electron microscopy, x-ray diffraction, and small angle x-ray scattering
Doutorado
Física
Doutor em Ciências
Igarashi, Ricardo Noboru. "Estudo teórico de nanoestruturas magnéticas em superfícies metálicas". Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-26032013-144125/.
Testo completoWe use the first principles RS-LMTO-ASA (Real Space - Linear Muffin- Tin Orbital - Atomic Sphere Approximation) method, in the framework of the Density Functional Theory and implemented to calculate noncollinear magnetic structures, to investigate the magnetic properties of nanostructures adsorbed on metallic surfaces. First, due to presence of the complex magnetic properties, we investigated magnetic nanostructures deposited on a ferromagnetic substrate. We have considered a variety of nanostructures such as adsorbed wires, pyramids, at and intermixed clusters with sizes varying from two to nine atoms deposited on Fe(001) and Fe(110). Our calculations reveal the long-range nature of exchange interactions between Mn-Mn and Mn-Fe atoms. Moreover, the presence of the strong dependence of these interactions on the local environment, the magnetic frustration, and the effect of spin-orbit coupling lead to the possibility of realizing complex noncollinear magnetic structures such as helical spin spiral and half-skyrmion. Finally, we also investigated FexCo1-x nanowires deposited on Pt(111) surface aiming to investigate materials with large local magnetic moment. Our results reveal that the Fe and Co spin magnetic moment are independent of the Fe concentration with the enhancement of the spin magnetic moment when compared with the FeCo bcc alloys, while the average spin magnetic moment is a linear function of the Fe concentration. This is in contrast to the Slater-Pauling model observed in the FeCo bcc alloys. The average orbital magnetic moment shows a linearly decreasing behavior with the Fe concentration which is in contrast to the behavior of FexCo1-x monolayer on Pt(111) surface.
Martins, Cezar Soares. "Magnetização e Magnetoresistência Gigante em Ligas Granulares CuNiFe". Universidade de São Paulo, 2000. http://www.teses.usp.br/teses/disponiveis/43/43133/tde-02122013-185104/.
Testo completoIn this work, we study the magnetic properties and giant magnetoresistance (GMR) in ribbons of Cu80 Ni20-xFex (x = 2.5, 5, 10, 17.5, 20) prepared by melt-spinning. The ribbons were studied as a function of annealing temperature Tan 500°C, using a SQUID magnetometer. A wide variety of granular structures é obtained for different Ni/ Fe ratios and annealing conditions. In Cu80 Ni10 Fe10 , the magnetization shows no static hysteresis for T 50K. This behaviour is consistent with the susceptibility curve which indicates a blocking temperature below 50K. At this temperature, the largest GMR value was obtained for the ribbons annealed at 400°C for two hours. The magnetization curves were compared with a theoretical model that takes into account the magnetic moment distribution. In Cu80 Ni15Fe5, the microstructure and magnetic properties are much more sensitive to annealing. For t he ribbons with 10, 15, 17.5 % Fe composition, the magnetization presented a reduction with annealing at 400°C. This redution may be explained in terms of particle formation near the Invar region. An anomalous linear behaviour of the MR was observed and can be explained in terms of spin-dependent scattering when an electron passes from a superparamagnetic particle to a thermally blocked particle.
Dalponte, Alessandro. "Melhoramento de sensores magnetostrictivos de deformação". reponame:Repositório Institucional da UCS, 2017. https://repositorio.ucs.br/handle/11338/2146.
Testo completoSubmitted by Ana Guimarães Pereira (agpereir@ucs.br) on 2017-04-06T19:26:08Z No. of bitstreams: 1 Dissertacao Alessandro Dalponte.pdf: 3408308 bytes, checksum: 24cdc0372903d233d5c2d5846465cccd (MD5)
Made available in DSpace on 2017-04-06T19:26:08Z (GMT). No. of bitstreams: 1 Dissertacao Alessandro Dalponte.pdf: 3408308 bytes, checksum: 24cdc0372903d233d5c2d5846465cccd (MD5) Previous issue date: 2017-04-06
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES.
Magnetic amorphous ribbons have a great variety of sensorial applications due to their magnetic properties. The possibility of being remotely queried allows their application in cases where sensors with wired connections present a physical limitation. The capability of acquiring a transverse magnetic anisotropy through thermal treatments, under applied magnetic field and/or stress, is what makes these materials attractive for application in magnetostrictive strain-gauges. The materials studied in this work, Metglas 2826MB3, Yeke 1k501, Yeke 1k501a, Vitrovac 7600, Vitroperm 800 and a commercial EAS Tags, presented magnetization curves with characteristics of materials with reduced transverse magnetic anisotropy. This was the motivation to carry out thermomagnetic treatments. The treatments were carried out under a magnetic field of approximately 500 Oe, using temperatures of 235, 275, 315 and 350˚C, for periods of 15, 30 and 60 minutes, in a home-made oven. The treatments resulted in considerable improvements on the shape of the ΔE curves, making them more asymmetric and increasing the frequency variations that these materials can present. The treatments also resulted in linear M-H curves, with constant magnetic susceptibility until saturation. A system for the application of stresses up to 30 MPa on the samples was built. ΔE curves with greater asymmetry for the pair resonator transducer (components of the strain-gauge) allowed a greater resonance frequency variation response of the sensor during strain tests. In the best case, a frequency variation above 5 kHz was detected for deformations of approximately 260 ppm, when the pair resonator transducer made of thermomagneticaly treated Metglas 2826MB3 was used. The measurements of the ΔE curves of a treated Metglas 2826MB3 ribbon, placed over 1010 steel substrates, soft magnetic material, showed that they were still detectable. However, their form was altered due to the magnetic interaction with the steel. Simulations made using the software FEMM, helped to understand the observed phenomena during the strain tests and the interaction between the ribbon and the soft magnetic substrates.
Buz, Jennifer. "Recent lunar magnetism". Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/69470.
Testo completoCataloged from PDF version of thesis. Page 37 blank.
Includes bibliographical references (p. 36).
The magnetization of young lunar samples (<1.5 Ga) is a mystery because common sources of magnetic fields (e.g. core dynamo and long-lived impact plasma fields) have not been present within the last 1.5 Ga. To better characterize the source of magnetization in young lunar samples, we conducted paleomagnetic measurements on several subsamples of lunar glass 12017, which has a formation age of -9 ka, as well as on the underlying basalt from the same sample. Various methods of magnetization were tested, including possible contamination from Earth's magnetic field, exposure to transient magnetic fields such as on the Apollo module, and interaction fields from underlying magnetized rocks. The magnetic field emanated by the rock underlying the 12017 glass was determined to be -150 nT, comparable with the noise associated with paleomagnetic techniques. This opens up a new possible source of magnetization for samples- the laboratory. It is likely that other young lunar samples' paleointensities are overestimates, and that the strengths of magnetic fields on the Moon in the last 1.5 Ga are more similar to the strengths we observed from the 12017 glass. Underlying rocks and laboratory techniques are viable sources of magnetic fields, therefore, young lunar sample magnetization can no longer be used as evidence against an ancient core dynamo. Furthermore, the basalt portion of the 12017 is unidirectionally magnetized, suggesting an ancient core dynamo on the Moon when it formed at 3.2 Ga.
by Jennifer Buz.
S.M.
Robertson, Laura, e A. Lowery. "Electricity and Magnetism". Digital Commons @ East Tennessee State University, 2016. https://dc.etsu.edu/etsu-works/780.
Testo completoMishra, Subodha. "Theory of photo-induced ferro-magnetism in dilute magnetic semiconductors". Diss., Columbia, Mo. : University of Missouri-Columbia, 2006. http://hdl.handle.net/10355/4413.
Testo completoThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on August 6, 2007) Includes bibliographical references.
Venkataramana, Vikash. "Neutrons to probe nanoscale magnetism in perpendicular magnetic recording media". Thesis, University of St Andrews, 2012. http://hdl.handle.net/10023/3187.
Testo completoSvensson, Jacob N. "A Study of the Magnetic Properties of Yb4LiGe4: Unusual Magnetism". Thesis, Boston College, 2010. http://hdl.handle.net/2345/1376.
Testo completoThe R5T4 compounds (R = rare earth, T = Ge or Si) are interesting because the magnetic properties are very sensitively dependent on slight changes in the crystalline structure. Yb5Ge4 is one such compound, with (presumed) antiferromagnetic order occurring at TN = 1.7 K. We are interested in the effects of substituting Li in place of one Yb atom. Previous measurements of the magnetic properties of polycrystalline Yb4LiGe4 using NMR, specific heat, and resistance measurements at temperatures down to 0.5 K and in magnetic fields up to 4 Tesla were made to compare results with the parent compound. The resistance measurements showed a maximum at 1.1 K, which may indicate the onset of magnetic order. Thus we performed μSR measurements on Yb4LiGe4 and Yb5Ge4, and analysis of the data confirmed magnetic ordering (possibly antiferromagnetic) at 1.1 K. The μSR measurements also revealed a dependence on the magnetic history of the sample. Currently we are studying the pressure dependence of the (presumed) Néel Temperature in order to explore whether increased pressure can drive the TN to 0 K, and results will be discussed
Thesis (BS) — Boston College, 2010
Submitted to: Boston College. College of Arts and Sciences
Discipline: Physics Honors Program
Discipline: Physics
Lima, Valquiria Fernanda Gonçalves de. "Preparação e caracterização de nanopartículas magnéticas de Sm-Co, Nd-Fe-B, Fe-Pt e Co-Pt pelo método de agregação gasosa". Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-26112014-135553/.
Testo completoIn the recent years, nanoparticles (NPs) are being in all fields of technology. Their promising applications involve among others, the field of sensors and transducers, magnetic recording media, magnetic carriers of medicinal drugs. Aiming to produce NPs by physical method, a generator of nanoparticles was adapted using a system of guns \"magnetron sputtering\", based on the aggregation gas method. With the generator we are able to produce NPs with different types of material. In this work, we present the development of the methodology for the production of nanoparticles of hard magnetic materials, using targets of SmCo5, Sm2Co17, Nd2Fe17B, FePt and CoPt. We investigated the influence of the deposition parameters (pressure, gas flux and sputtering power), substrate type and the existence of the buffer and/or codeposition layers, to obtain the desired structural and magnetic properties for the nanoparticles. The produced NPs were magnetically analyzed by VSM and SQUID, the morphology and size by TEM and SEM, the stoichiometry by RBS and the crystal structure by XRD. The main objective of this work is to obtain nano-magnet with high magnetic anisotropy. Through the morphological characterization by electron microscopy, we found for NPs produced and studied have diameters between 5 and 17 nm. Through RBS analysis we have obtained the composition of the NPs, and also that they have different stoichiometry in relation to the used targets. Structural and magnetic studies have show that for Sm-Co, Fe-Pt and Co-Pt it is possible to obtain crystalline NPs with coercive field around 1 kOe.
Stanley, Daniel C. "MAGNETIC DAMPING IN FE3O4 THROUGH THE VERWEY TRANSITION FOR VARIABLE AG THICKNESSES". Miami University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=miami1376500586.
Testo completoGonzález, Alonso David. "Magnetisme i estructura en aliatges funcionals = Magnetism and structure in functional alloys". Doctoral thesis, Universitat de Barcelona, 2014. http://hdl.handle.net/10803/145681.
Testo completoDepending on whether the magnetic field is applied adiabatically to the sample or in isothermal conditions, the thermal response of the material will result in a temperature change or in an entropy change, respectively. In both cases, one obtain a thermal response which is known as Magnetocaloric Effect (MCE). In fact, any variation of the thermal variables can be classified based on the external applied field. Thus, depending on the nature of the external stimulus we will obtain a different caloric effect, such as the aforementioned magnetocaloric effect when applying a magnetic field. In the 1930s this magnetocaloric effect, indeed, showed up the possibility to reach temperatures well below 1 K through the adiabatic demagnetization of paramagnetic salts. Today, the discovery of new materials together with technological improvements are bridging the gap between research and solid-state refrigeration at room temperature. In summary, within this thesis we have studied a variety of magnetic materials exhibiting different giant Caloric effects that are proving to be very promising materials for eco-friendly solid-state refrigeration purposes.
Liu, Mingde. "Magnetization-steps spectroscopy in dilute magnetic semiconductors and in molecular magnetism /". Thesis, Connect to Dissertations & Theses @ Tufts University, 1998.
Cerca il testo completoAdviser: Yaacov Shapira. Submitted to the Dept. of Physics. Includes bibliographical references. Access restricted to members of the Tufts University community. Also available via the World Wide Web;
Staneva, Maya. "Theoretical study of dilute magnetic semiconductors : Properties of (Ga,Mn)As". Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-126096.
Testo completoDen magnetiska halvledaren (Ga,Mn)As som är det mest intressanta och lovande materialet för spinelektroniska tillämpningar har teoretiskt undersökts med hjälp av Täthetsfunktionalteorin. Först gjordes beräkningar på GaAs och det visade sig att GaAs är en halvledare med direkt bandgap. Det beräknade värdet på bandgapet är ca 0.5eV. Sedan var det järn som undersöktes och det blev bekräftat att järn är en ferromagnetisk metall med netto magnetisk moment lika med 2.2μB. Då magnetiska störningar i form av mangan atomer, Mn, infördes i det omagnetiska GaAs blev halvledaren ferromagnetisk med netto magnetisk moment lika med 4μB. Orsakerna till den ferromagnetiska ordningen diskuteras och även Curie temperaturen TC för materialet. Det visade sig att (Ga,Mn)As är ett lämpligt material för tillverkning av magnetiska halvledare men TC måste ökas innan (Ga,Mn)As skulle kunna användas i spinntroniska tillämpningar och av det skälet anges i slutet vissa metoder för att öka TC.
Szczech, Yolande Helen. "Magnetism in Hubbard models". Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318681.
Testo completoCruz, H. R. da. "Critical phenomena in magnetism". Thesis, University of Oxford, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.355743.
Testo completoWalton, Stephanie Katharine. "Magnetism in frustrated nanostructures". Thesis, Imperial College London, 2014. http://hdl.handle.net/10044/1/25964.
Testo completoSchmehr, Julian Leonard. "Incommensurate magnetism in UAu2". Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/17958.
Testo completoConlon, Peter Hugh. "Aspects of frustrated magnetism". Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:66d30c85-3ccf-4887-b0de-b3f2ee983ffe.
Testo completoWalsh, James Paul Slater. "Anisotropy in molecular magnetism". Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/anisotropy-in-molecular-magnetism(11474b91-0d3d-4b0a-97cd-214d1713674e).html.
Testo completoHagelberg, Frank. "Magnetism in Carbon Nanostructures". Digital Commons @ East Tennessee State University, 2017. https://dc.etsu.edu/etsu_books/151.
Testo completohttps://dc.etsu.edu/etsu_books/1164/thumbnail.jpg
Piccin, Rafael. "Interações magnéticas dipolares entre fios e microfios magnéticos". [s.n.], 2004. http://repositorio.unicamp.br/jspui/handle/REPOSIP/278210.
Testo completoDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin
Made available in DSpace on 2018-08-03T22:09:03Z (GMT). No. of bitstreams: 1 Piccin_Rafael_M.pdf: 28985729 bytes, checksum: afa3d6ef86c868ccfd0239d4dfa72438 (MD5) Previous issue date: 2004
Resumo: Nesta dissertação de mestrado são apresentados resultados do efeito do campo dipolar magnético em conjuntos formados por fios e microfios ferromagnéticos amorfos de composição Fe77,5Sil2,5B15. Devido à estrutura de domínios peculiar destes fios magnéticos, eles podem ser, em princípio, aproximados a dipolos magnéticos, permitido a análise destes campos magnetostáticos nestas estruturas macroscópicas. Os estudos foram realizados em conjuntos de fios colocados lado a lado. As curvas de magnetização foram medidas variando-se o número de elementos. Além disso, no caso de dois fios, medidas em função da separação entre os dois elementos foram realizadas. Estas medidas magnéticas foram feitas empregando um magnetômetro desenvolvido durante o projeto e também utilizado um magnetômetro SQUID. Os resultados são explicados considerando o campo dipolar gerado por cada fio do conjunto, que altera os valores do campo de inversão da magnetização e faz com que platôs sejam observados nas curvas de magnetização. Os efeitos do campo dipolar também foram observados em medidas de magnetoimpedância, onde a presença do fio rico em Fe desloca as curvas de magnetoimpedância de um fio amorfo base Co, de modo análogo a um campo bias
Abstract: The results of the magnetic dipolar field in an array of amorphous ferromagnetic wires and microwires of composition Fe77,5Si12,5B15 are presented in this dissertation. Due to their peculiar domain structure, in principle, they can be approximated to magnetic dipoles, a11owing the analysis of the magnetostatic field among these macroscopic entities. The studies were carried out in arrays of wires placed side by side. The magnetic loops were measured changing the number of elements. Moreover, in the case of two parallel wires, measurements as function of the distance between the wires were performed. The magnetic measurements were carried out in an inductive magnetometer developed during this project and a1so using a SQUID magnetometer. The results are explained considering the dipolar field created by each wire in the array. The dipolar field changes the reversal field of the wires, a11owing the appearance of plateaus during the demagnetization. The effects of the dipolar field were also observed in magnetoimpedance measurements when a Fe-rich wire in placed near an amorphous Co-based wire, its presence dislocates the Co-based wire magnetoimpedance curves, ana1ogously as a bias field
Mestrado
Física
Mestre em Física
Landi, Gabriel Teixeira. "Desenvolvimento de um gerador de nanopartículas e caracterização de nanopartículas de cobalto". Universidade de São Paulo, 2009. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-12052009-092829/.
Testo completoWe have developed a nanoparticle (NP) generator by adapting one of the sputtering guns on a magnetron sputtering system. With it, we are able to produce nanoparticles with different types of material. The adaptation consists of including a high-pressure region in the path of the atomic vapor removed from the sputtering target. The condensation happens thermodynamically through the loss of kinetic energy that the atomic vapor suffers after collisions with the gas. We have also developed a methodology to collimate the flow of nanoparticles inside the high pressure region. The deposition on the substrate is in the form of a stain with a few millimeters in diameter. The sample preparation time is also relatively short. We created a phenomenological model to explain both the condensation and collimation phenomena in our system. Despite being relatively simple, this model explain both quite well. In parallel to the development of the system, we produced and characterized cobalt nanoparticles. From a morphological analysis, carried out using electron microscopy, we determined that the nanoparticles mean diameter is of about 10 nm with a dispersion of 13 %. Through Rutherford back-scattering analysis, we studied the thickness distribution of the sample along the substrate. We observed that it follows a Gaussian distribution. Also, because of the collimation of the material, the deposition rates are about 50 times higher than in a regular sputtering system. Using X ray diffraction we were able to determine that the NPs are nano-crystalline which is corroborated with high resolution transmission electron microscopy images. Finally, magnetic measurements showed that the nanoparticles do not have any preferential magnetization axis. We developed standards of operations and stabilized the system. The samples we produce are trustworthy and reproducible. Besides Co, Cu and SmCo NPs were produced using this system with conditions similar to the ones used on the Co NPs. Through morphological analysis, we determined that their sizes are also similar. These results illustrate the universality of our system.
Coaquira, José Antonio Huamaní. "Propriedades Magnéticas e Hiperfinas das Ligas Zr(FexCr1-x)2 e seus Hidretos". Universidade de São Paulo, 1998. http://www.teses.usp.br/teses/disponiveis/43/43133/tde-11032014-164100/.
Testo completoWe have investigated the magnetic properties and hyperfine interactions in the \'ZR\'\'(\'FE IND. x\'\'CR IND. 1-x\') IND. 2\' (0.3 < x < 0.7) alloys and their hydrides, by means of magnetization measurements in fields up to 9 T, AC susceptibility and Mõssbauer spectroscopy. X-ray diffraction confirmed the Laves phase Cl4 hexagonal structure for all samples. The room temperature Mõssbauer spectra of all samples showed two quadrupolar doublets, which could be assigned in two ways to the Fe crystallographic sites 2a and 6h. This ambiguity was solved by a point-charge calculation using atomic positions determined by Rietveld refinement. Magnetic and Mõssbauer measurements at low temperatures indicated that all investigated samples showed spin-glass behavior, without long-range magnetic order. The set of observed spin freezing temperatures could be described with the Vogel-Fulcher equation. The critical Fe concentration for magnetic moment formation has been determined. The effect of hydrogen absorption was investigated: a) with the maximum H content for all alloys, b) with intermediate H contents for the \'ZR\'\'(\'FE IND. 0.5\'\'CR IND. 0.5\') IND. 2\' alloy. Mõssbauer spectra for the latter samples showed the coexistence of a H-poor and a H-rich phase. The Fe quadrupole splitting at the 6h site exhibited a temperature dependence which was attributed to hydrogen diffusion effects. The main effect of hydrogen on the magnetism was a significant increase in magnetic moments, yet without ferromagnetic ordering; a slight lowering of spin freezing temperatures was actually observed.
Costa, Marcio. "First-principles Studies of Local Structure Effects in Magnetic Materials". Doctoral thesis, Uppsala universitet, Materialteori, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-179223.
Testo completoThanaboonsombut, Buncha. "An investigation of magnetically induced defect recovery in ferromagnetic nickel". Thesis, Georgia Institute of Technology, 1990. http://hdl.handle.net/1853/17041.
Testo completo