Libri sul tema "Magnetic pulse generator"

Segui questo link per vedere altri tipi di pubblicazioni sul tema: Magnetic pulse generator.

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-20 libri per l'attività di ricerca sul tema "Magnetic pulse generator".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi i libri di molte aree scientifiche e compila una bibliografia corretta.

1

Cowan, M. Megagauss magnetic field generation and pulsed power applications. New York: Nova Science, 1994.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Russia) Gidrodinamika vysokikh plotnosteĭ ėnergii (2003 Novosibirsk. Gidrodinamika vysokikh plotnosteĭ ėnergii: Trudy mezhdunarodnogo seminara Gidrodinamika vysokikh plotnosteĭ ėnergii, 11-15 avgusta 2003 g., Novosibirsk, Rossii︠a︡. Novosibirsk: Institut gidrodinamiki im. M.A. Lavrentʹeva SO RAN, 2004.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

L, Altgilbers Larry, a cura di. Magnetocumulative generators. New York: Springer, 2000.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

International, Conference on Megagauss Magnetic Field Generation and Related Topics (4th 1986 Santa Fe N. M. ). Megagauss technology and pulsed power applications. New York: Plenum Press, 1987.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

International Conference on Megagauss Magnetic Field Generation and Related Topics (8th 1998 Tallahassee, Fla.). Megagauss magnetic field generation, its application to science and ultra-high pulsed-power technology: Proceedings of the VIIIth International Conference on Megagauss Magnetic Field Generation and Related Topics : Tallahassee, Florida, USA, 18-23 October 1998. Hackensack, NJ: World Scientific, 2004.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Neuber, Andreas A. Explosively Driven Pulsed Power: Helical Magnetic Flux Compression Generators. Springer, 2010.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Neuber, Andreas A. Explosively Driven Pulsed Power: Helical Magnetic Flux Compression Generators. Springer London, Limited, 2006.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Neuber, Andreas A. Explosively Driven Pulsed Power: Helical Magnetic Flux Compression Generators (Power Systems). Springer, 2005.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Shneerson, German A., Sergey I. Krivosheev e Mikhail I. Dolotenko. Strong and Superstrong Pulsed Magnetic Fields Generation. de Gruyter GmbH, Walter, 2014.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Strong And Superstrong Pulsed Magnetic Fields Generation. Walter de Gruyter, 2012.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
11

Shneerson, German A., Sergey I. Krivosheev e Mikhail I. Dolotenko. Strong and Superstrong Pulsed Magnetic Fields Generation. de Gruyter GmbH, Walter, 2014.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
12

Fowler, C. M., R. S. Caird e D. J. Erickson. Megagauss Technology and Pulsed Power Applications. Springer, 1987.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
13

George, Thomas F., Wolfgang Hübner, Guo-ping Zhang, Georgios Lefkidis e Mitsuko Murakami. Introduction to Ultrafast Phenomena: From Femtosecond Magnetism to High-Harmonic Generation. Taylor & Francis Group, 2020.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
14

George, Thomas F., Wolfgang Hübner, Guo-ping Zhang, Georgios Lefkidis e Mitsuko Murakami. Introduction to Ultrafast Phenomena: From Femtosecond Magnetism to High-Harmonic Generation. Taylor & Francis Group, 2020.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
15

George, Thomas F., Wolfgang Hübner, Guo-ping Zhang, Georgios Lefkidis e Mitsuko Murakami. Introduction to Ultrafast Phenomena: From Femtosecond Magnetism to High-Harmonic Generation. Taylor & Francis Group, 2020.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
16

George, Thomas F., Wolfgang Hübner, Guo-ping Zhang, Georgios Lefkidis e Mitsuko Murakami. Introduction to Ultrafast Phenomena: From Femtosecond Magnetism to High-Harmonic Generation. Taylor & Francis Group, 2020.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
17

Bylander, J. Superconducting Quantum Bits of Information—Coherence and Design Improvements. A cura di A. V. Narlikar. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780198738169.013.18.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
This article reviews recent progress in superconducting quantum bits, including major improvements in design and coherence times. It first provides an overview of the basics of modern superconducting qubit devices and their architectures before turning to single-qubit Hamiltonians and reference frames. It then examines how decoherence originates with noise and shows how to characterize and mitigate this noise using magnetic-resonance-type pulse sequences. It also describes the first-generation superconducting qubits and the now-dominant circuit-quantum electrodynamics architecture in which qubits are coupled to microwave resonators. Finally, it considers several improved designs of superconducting qubits in which coherence times have been significantly improved by minimizing the sensitivity to fluctuating impurities and the coupling to external modes.
18

Gilbert, Donald L. Design and analysis of motor-evoked potential data in pediatric neurobehavioral disorder investigations. A cura di Charles M. Epstein, Eric M. Wassermann e Ulf Ziemann. Oxford University Press, 2012. http://dx.doi.org/10.1093/oxfordhb/9780198568926.013.0025.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
This article discusses how transcranial magnetic stimulation (TMS) can be used to study the pathophysiological substrata of pediatric neurological and neurobehavioural disorders and to provide practical guidance for future research. It outlines the substantial challenges inherent in studying in vivo the neurobiology of pediatric neurobehavioural disorders, such as safety, quantitative versus categorical measures, and challenges in correlational studies. It discusses ways in which TMS generates quantitative measures that may function as endophenotypes for neurobehavioural disorders. Combining TMS with other modalities may also be informative. Single- and paired-pulse TMS is safe and well tolerated in children. The application of rigorous experimental designs and a combination of TMS with other research methods may increase the knowledge of pathophysiology and treatment of pediatric neurobehavioural disorders.
19

Wright, A. G. Secondary emission and gain. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780199565092.003.0005.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Secondary-electron emission generates gain in conventional vacuum photomultipliers with discrete dynodes. This is a cascade process involving between 6 and 20 elements. Generally, the higher the number of stages, the higher is the gain and similarly for applied voltage. Gain is dependent on the composition of the dynodes, with SbCs and activated BeO being the most common materials. There are ten different dynode types, each of which serves a particular purpose: for example, operation in high magnetic fields and high temperature. The continuous channel dynode is available as a single unit and as a multichannel structure, the microchannel plate. The quality of a dynode system is described by its single-electron response. Discrete dynodes produce a spread in output size whereas the channel devices are generally operated in saturation. Gain may be quoted as DC, G, and pulsed ‹g› and methods for measuring these parameters are given.
20

Schneider-Muntau, Hans J. Megagauss Magnetic Field Generation, Its Application To Science And Ultra-High Pulsed-Power Technology: Proceedings of the VIIIth International Conference ... : Tallahassee, Florida, USA 18-23 October. World Scientific Publishing Company, 2004.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Vai alla bibliografia