Articoli di riviste sul tema "MADDPG"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "MADDPG".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.
Yang, Jianfeng, Xinwei Yang e Tianqi Yu. "Multi-Unmanned Aerial Vehicle Confrontation in Intelligent Air Combat: A Multi-Agent Deep Reinforcement Learning Approach". Drones 8, n. 8 (7 agosto 2024): 382. http://dx.doi.org/10.3390/drones8080382.
Testo completoZhang, Xiaoping, Yuanpeng Zheng, Li Wang, Arsen Abdulali e Fumiya Iida. "Multi-Agent Collaborative Target Search Based on the Multi-Agent Deep Deterministic Policy Gradient with Emotional Intrinsic Motivation". Applied Sciences 13, n. 21 (1 novembre 2023): 11951. http://dx.doi.org/10.3390/app132111951.
Testo completoWilk, Patrick, Ning Wang e Jie Li. "Multi-Agent Reinforcement Learning for Smart Community Energy Management". Energies 17, n. 20 (20 ottobre 2024): 5211. http://dx.doi.org/10.3390/en17205211.
Testo completoWang, Lixing, e Huirong Jiao. "Multi-Agent Reinforcement Learning-Based Computation Offloading for Unmanned Aerial Vehicle Post-Disaster Rescue". Sensors 24, n. 24 (15 dicembre 2024): 8014. https://doi.org/10.3390/s24248014.
Testo completoPetrenko, V. I., F. B. Tebueva, M. M. Gurchinsky e A. S. Pavlov. "Method of Multi-Agent Reinforcement Learning in Systems with a Variable Number of Agents". Mekhatronika, Avtomatizatsiya, Upravlenie 23, n. 10 (9 ottobre 2022): 507–14. http://dx.doi.org/10.17587/mau.23.507-514.
Testo completoChen, Zhisheng. "DQN–MADDPG Coordinating the Multi-agent Cooperation". Highlights in Science, Engineering and Technology 39 (1 aprile 2023): 1141–45. http://dx.doi.org/10.54097/hset.v39i.6720.
Testo completoLiu, Bo, Shulei Wang, Qinghua Li, Xinyang Zhao, Yunqing Pan e Changhong Wang. "Task Assignment of UAV Swarms Based on Deep Reinforcement Learning". Drones 7, n. 5 (29 aprile 2023): 297. http://dx.doi.org/10.3390/drones7050297.
Testo completoWei, Juyao, Zhenggang Lu, Zheng Yin e Zhipeng Jing. "Multiagent Reinforcement Learning for Active Guidance Control of Railway Vehicles with Independently Rotating Wheels". Applied Sciences 14, n. 4 (19 febbraio 2024): 1677. http://dx.doi.org/10.3390/app14041677.
Testo completoLi, Xilun, Zhan Li, Xiaolong Zheng , Xuebo Yang e Xinghu Yu . "The Study of Crash-Tolerant, Multi-Agent Offensive and Defensive Games Using Deep Reinforcement Learning". Electronics 12, n. 2 (8 gennaio 2023): 327. http://dx.doi.org/10.3390/electronics12020327.
Testo completoHu, Weichao, Hongzhang Mu, Yanyan Chen, Yixin Liu e Xiaosong Li. "Modeling Interactions of Autonomous/Manual Vehicles and Pedestrians with a Multi-Agent Deep Deterministic Policy Gradient". Sustainability 15, n. 7 (3 aprile 2023): 6156. http://dx.doi.org/10.3390/su15076156.
Testo completoZhu, Zixiong, Nianhao Xie, Kang Zong e Lei Chen. "Building a Connected Communication Network for UAV Clusters Using DE-MADDPG". Symmetry 13, n. 8 (20 agosto 2021): 1537. http://dx.doi.org/10.3390/sym13081537.
Testo completoBachiri, Khalil, Ali Yahyaouy, Hamid Gualous, Maria Malek, Younes Bennani, Philippe Makany e Nicoleta Rogovschi. "Multi-Agent DDPG Based Electric Vehicles Charging Station Recommendation". Energies 16, n. 16 (19 agosto 2023): 6067. http://dx.doi.org/10.3390/en16166067.
Testo completoXue, Junjie, Jie Zhu, Jiangtao Du, Weijie Kang e Jiyang Xiao. "Dynamic Path Planning for Multiple UAVs with Incomplete Information". Electronics 12, n. 4 (16 febbraio 2023): 980. http://dx.doi.org/10.3390/electronics12040980.
Testo completoLin, Xudong, e Mengxing Huang. "An Autonomous Cooperative Navigation Approach for Multiple Unmanned Ground Vehicles in a Variable Communication Environment". Electronics 13, n. 15 (1 agosto 2024): 3028. http://dx.doi.org/10.3390/electronics13153028.
Testo completoZheng, Siying, Jie Wu, Zhaolong Wang, Liping Qu e Yikai He. "Research on Cooperative Tracking of Multiple Agents on Heterogeneous Ground". Journal of Physics: Conference Series 2872, n. 1 (1 ottobre 2024): 012001. http://dx.doi.org/10.1088/1742-6596/2872/1/012001.
Testo completoDake, Delali Kwasi, James Dzisi Gadze, Griffith Selorm Klogo e Henry Nunoo-Mensah. "Multi-Agent Reinforcement Learning Framework in SDN-IoT for Transient Load Detection and Prevention". Technologies 9, n. 3 (29 giugno 2021): 44. http://dx.doi.org/10.3390/technologies9030044.
Testo completoQin, Pinpin, Hongyun Tan, Hao Li e Xuguang Wen. "Deep Reinforcement Learning Car-Following Model Considering Longitudinal and Lateral Control". Sustainability 14, n. 24 (13 dicembre 2022): 16705. http://dx.doi.org/10.3390/su142416705.
Testo completoWan, Kaifang, Dingwei Wu, Yiwei Zhai, Bo Li, Xiaoguang Gao e Zijian Hu. "An Improved Approach towards Multi-Agent Pursuit–Evasion Game Decision-Making Using Deep Reinforcement Learning". Entropy 23, n. 11 (29 ottobre 2021): 1433. http://dx.doi.org/10.3390/e23111433.
Testo completoYang, Yang, Jiang Li, Jinyong Hou, Ye Wang e Huadong Zhao. "A Policy Gradient Algorithm to Alleviate the Multi-Agent Value Overestimation Problem in Complex Environments". Sensors 23, n. 23 (30 novembre 2023): 9520. http://dx.doi.org/10.3390/s23239520.
Testo completoLiu, Muchen. "Integrating Multi-Agent Deep Deterministic Policy Gradient and Go-Explore for Enhanced Reward Optimization". Highlights in Science, Engineering and Technology 85 (13 marzo 2024): 403–10. http://dx.doi.org/10.54097/znrt8d63.
Testo completoYe, Xianfeng, Zhiyun Deng, Yanjun Shi e Weiming Shen. "Toward Energy-Efficient Routing of Multiple AGVs with Multi-Agent Reinforcement Learning". Sensors 23, n. 12 (15 giugno 2023): 5615. http://dx.doi.org/10.3390/s23125615.
Testo completoWu, Tianhao, Mingzhi Jiang e Lin Zhang. "Cooperative Multiagent Deep Deterministic Policy Gradient (CoMADDPG) for Intelligent Connected Transportation with Unsignalized Intersection". Mathematical Problems in Engineering 2020 (22 luglio 2020): 1–12. http://dx.doi.org/10.1155/2020/1820527.
Testo completoWei, Jingjing, Yinsheng Wei, Lei Yu e Rongqing Xu. "Radar Anti-Jamming Decision-Making Method Based on DDPG-MADDPG Algorithm". Remote Sensing 15, n. 16 (16 agosto 2023): 4046. http://dx.doi.org/10.3390/rs15164046.
Testo completoBudiyanto, Almira, Keisuke Azetsu e Nobutomo Matsunaga. "Accelerated Transfer Learning for Cooperative Transportation Formation Change via SDPA-MAPPO (Scaled Dot Product Attention-Multi-Agent Proximal Policy Optimization)". Automation 5, n. 4 (27 novembre 2024): 597–612. http://dx.doi.org/10.3390/automation5040034.
Testo completoLin, Yuanmo, Yuxun Ai, Zhiyong Xu, Jingyuan Wang e Jianhua Li. "Adaptive Resource Allocation for Emergency Communications with Unmanned Aerial Vehicle-Assisted Free Space Optical/Radio Frequency Relay System". Photonics 11, n. 8 (13 agosto 2024): 754. http://dx.doi.org/10.3390/photonics11080754.
Testo completoYu, Sheng, Wei Zhu e Yong Wang. "Research on Wargame Decision-Making Method Based on Multi-Agent Deep Deterministic Policy Gradient". Applied Sciences 13, n. 7 (4 aprile 2023): 4569. http://dx.doi.org/10.3390/app13074569.
Testo completoArain, Zulfiqar Ali, Xuesong Qiu, Changqiao Xu, Mu Wang e Mussadiq Abdul Rahim. "Energy-Aware MPTCP Scheduling in Heterogeneous Wireless Networks Using Multi-Agent Deep Reinforcement Learning Techniques". Electronics 12, n. 21 (1 novembre 2023): 4496. http://dx.doi.org/10.3390/electronics12214496.
Testo completoZhou, Xiao, Song Zhou, Xingang Mou e Yi He. "Multirobot Collaborative Pursuit Target Robot by Improved MADDPG". Computational Intelligence and Neuroscience 2022 (25 febbraio 2022): 1–10. http://dx.doi.org/10.1155/2022/4757394.
Testo completoZhang, Lu, Junwei Li, Qianwen Yang, Chenglin Xu e Feng Zhao. "MADDPG-Based Deployment Algorithm for 5G Network Slicing". Electronics 13, n. 16 (12 agosto 2024): 3189. http://dx.doi.org/10.3390/electronics13163189.
Testo completoBildik, Enver, e Antonios Tsourdos. "Clustering and Cooperative Guidance of Multiple Decoys for Defending a Naval Platform against Salvo Threats". Aerospace 11, n. 10 (27 settembre 2024): 799. http://dx.doi.org/10.3390/aerospace11100799.
Testo completoWang, Guangcheng, Fenglin Wei, Yu Jiang, Minghao Zhao, Kai Wang e Hong Qi. "A Multi-AUV Maritime Target Search Method for Moving and Invisible Objects Based on Multi-Agent Deep Reinforcement Learning". Sensors 22, n. 21 (7 novembre 2022): 8562. http://dx.doi.org/10.3390/s22218562.
Testo completoZhang, Hao, Yu Du, Shixin Zhao, Ying Yuan e Qiuqi Gao. "VN-MADDPG: A Variable-Noise-Based Multi-Agent Reinforcement Learning Algorithm for Autonomous Vehicles at Unsignalized Intersections". Electronics 13, n. 16 (11 agosto 2024): 3180. http://dx.doi.org/10.3390/electronics13163180.
Testo completoWu, Liangshun, Peilin Liu, Junsuo Qu, Cong Zhang e Bin Zhang. "Duty Cycle Scheduling in Wireless Sensor Networks Using an Exploratory Strategy-Directed MADDPG Algorithm". International Journal of Sensors and Sensor Networks 12, n. 1 (28 febbraio 2024): 1–12. http://dx.doi.org/10.11648/j.ijssn.20241201.11.
Testo completoIntelligence and Neuroscience, Computational. "Retracted: Multirobot Collaborative Pursuit Target Robot by Improved MADDPG". Computational Intelligence and Neuroscience 2023 (26 luglio 2023): 1. http://dx.doi.org/10.1155/2023/9839345.
Testo completoAi, Ling, Shaozhen Tang e Jie Yu. "Multi-agent cooperative encirclement based on improved MADDPG algorithm". Journal of Physics: Conference Series 2898, n. 1 (1 novembre 2024): 012033. http://dx.doi.org/10.1088/1742-6596/2898/1/012033.
Testo completoZhang, Demu, Jing Zhang, Yu He, Tao Shen e Xingyan Liu. "Adaptive Control of VSG Inertia Damping Based on MADDPG". Energies 17, n. 24 (20 dicembre 2024): 6421. https://doi.org/10.3390/en17246421.
Testo completoSuanpang, Pannee, e Pitchaya Jamjuntr. "Optimizing Electric Vehicle Charging Recommendation in Smart Cities: A Multi-Agent Reinforcement Learning Approach". World Electric Vehicle Journal 15, n. 2 (14 febbraio 2024): 67. http://dx.doi.org/10.3390/wevj15020067.
Testo completoLi, Yan, Mengyu Zhao, Huazhi Zhang, Yuanyuan Qu e Suyu Wang. "A Multi-Agent Motion Prediction and Tracking Method Based on Non-Cooperative Equilibrium". Mathematics 10, n. 1 (5 gennaio 2022): 164. http://dx.doi.org/10.3390/math10010164.
Testo completoFan, Dongyu, Haikuo Shen e Lijing Dong. "Multi-Agent Distributed Deep Deterministic Policy Gradient for Partially Observable Tracking". Actuators 10, n. 10 (14 ottobre 2021): 268. http://dx.doi.org/10.3390/act10100268.
Testo completoWen, Jiayi, Shaoman Liu e Yejin Lin. "Dynamic Navigation and Area Assignment of Multiple USVs Based on Multi-Agent Deep Reinforcement Learning". Sensors 22, n. 18 (14 settembre 2022): 6942. http://dx.doi.org/10.3390/s22186942.
Testo completoPan, Lei, Tong Zhang e Yuan Gao. "Real-Time Control of Gas Supply System for a PEMFC Cold-Start Based on the MADDPG Algorithm". Energies 16, n. 12 (12 giugno 2023): 4655. http://dx.doi.org/10.3390/en16124655.
Testo completoWang, Yizheng, Enhao Shi, Yang Xu, Jiahua Hu e Changsen Feng. "Short-Term Electricity Futures Investment Strategies for Power Producers Based on Multi-Agent Deep Reinforcement Learning". Energies 17, n. 21 (28 ottobre 2024): 5350. http://dx.doi.org/10.3390/en17215350.
Testo completoCao, Zhengyang, e Gang Chen. "Advanced Cooperative Formation Control in Variable-Sweep Wing UAVs via the MADDPG–VSC Algorithm". Applied Sciences 14, n. 19 (7 ottobre 2024): 9048. http://dx.doi.org/10.3390/app14199048.
Testo completoWei, Xiaolong, Lifang Yang, Gang Cao, Tao Lu e Bing Wang. "Recurrent MADDPG for Object Detection and Assignment in Combat Tasks". IEEE Access 8 (2020): 163334–43. http://dx.doi.org/10.1109/access.2020.3022638.
Testo completoJiang, Changxu, Zheng Lin, Chenxi Liu, Feixiong Chen e Zhenguo Shao. "MADDPG-Based Active Distribution Network Dynamic Reconfiguration with Renewable Energy". Protection and Control of Modern Power Systems 9, n. 6 (novembre 2024): 143–55. http://dx.doi.org/10.23919/pcmp.2023.000283.
Testo completoWang, Yuchen, Zishan Huang, Zhongcheng Wei e Jijun Zhao. "MADDPG-Based Offloading Strategy for Timing-Dependent Tasks in Edge Computing". Future Internet 16, n. 6 (21 maggio 2024): 181. http://dx.doi.org/10.3390/fi16060181.
Testo completoLei, Wenxin, Hong Wen, Jinsong Wu e Wenjing Hou. "MADDPG-Based Security Situational Awareness for Smart Grid with Intelligent Edge". Applied Sciences 11, n. 7 (31 marzo 2021): 3101. http://dx.doi.org/10.3390/app11073101.
Testo completoZhu, Zhidong, Xiaoying Deng, Jian Dong, Cheng Feng e Xiongjun Fu. "AK-MADDPG-Based Antijamming Strategy Design Method for Frequency Agile Radar". Sensors 24, n. 11 (27 maggio 2024): 3445. http://dx.doi.org/10.3390/s24113445.
Testo completoLu, Junsong, Zongsheng Wang, Kang Pan e Hanshuo Zhang. "Research on the influence of multi-agent deep deterministic policy gradient algorithm key parameters in typical scenarios". Journal of Physics: Conference Series 2858, n. 1 (1 ottobre 2024): 012037. http://dx.doi.org/10.1088/1742-6596/2858/1/012037.
Testo completoCai, He, Xingsheng Li, Yibo Zhang e Huanli Gao. "Interception of a Single Intruding Unmanned Aerial Vehicle by Multiple Missiles Using the Novel EA-MADDPG Training Algorithm". Drones 8, n. 10 (26 settembre 2024): 524. http://dx.doi.org/10.3390/drones8100524.
Testo completo