Tesi sul tema "Machine learning"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 saggi (tesi di laurea o di dottorato) per l'attività di ricerca sul tema "Machine learning".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi le tesi di molte aree scientifiche e compila una bibliografia corretta.
Andersson, Viktor. "Machine Learning in Logistics: Machine Learning Algorithms : Data Preprocessing and Machine Learning Algorithms". Thesis, Luleå tekniska universitet, Datavetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-64721.
Testo completoData Ductus är ett svenskt IT-konsultbolag, deras kundbas sträcker sig från små startups till stora redan etablerade företag. Företaget har stadigt växt sedan 80-talet och har etablerat kontor både i Sverige och i USA. Med hjälp av maskininlärning kommer detta projket att presentera en möjlig lösning på de fel som kan uppstå inom logistikverksamheten, orsakade av den mänskliga faktorn.Ett sätt att förbehandla data innan den tillämpas på en maskininlärning algoritm, liksom ett par algoritmer för användning kommer att presenteras.
Dinakar, Karthik. "Lensing Machines : representing perspective in machine learning". Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/112523.
Testo completoCataloged from PDF version of thesis. Due to the condition of the original material with text runs off the edges of the pages, the reproduction may have unavoidable flaws.
Includes bibliographical references (pages 167-172).
Generative models are venerated as full probabilistic models that randomly generate observable data given a set of latent variables that cannot be directly observed. They can be used to simulate values for variables in the model, allowing analysis by synthesis or model criticism, towards an iterative cycle of model specification, estimation, and critique. However, many datasets represent a combination of several viewpoints - different ways of looking at the same data that leads to various generalizations. For example, a corpus that has data generated by multiple people may be mixtures of several perspectives and can be viewed with different opinions by others. It isn't always possible to represent the viewpoints by clean separation, in advance, of examples representing each perspective and train a separate model for each point of view. In this thesis, we introduce lensing, a mixed-initiative technique to (i) extract lenses or mappings between machine-learned representations and perspectives of human experts, and (2) generate lensed models that afford multiple perspectives of the same dataset. We explore lensing of latent variable model in their configuration, parameter and evidential spaces. We apply lensing to three health applications, namely imbuing the perspectives of experts into latent variable models that analyze adolescent distress and crisis counseling.
by Karthik Dinakar.
Ph. D.
Tebbifakhr, Amirhossein. "Machine Translation For Machines". Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/320504.
Testo completoRoderus, Jens, Simon Larson e Eric Pihl. "Hadoop scalability evaluation for machine learning algorithms on physical machines : Parallel machine learning on computing clusters". Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-20102.
Testo completoCollazo, Santiago Bryan Omar. "Machine learning blocks". Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/100301.
Testo completoThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references.
This work presents MLBlocks, a machine learning system that lets data scientists explore the space of modeling techniques in a very easy and efficient manner. We show how the system is very general in the sense that virtually any problem and dataset can be casted to use MLBlocks, and how it supports the exploration of Discriminative Modeling, Generative Modeling and the use of synthetic features to boost performance. MLBlocks is highly parameterizable, and some of its powerful features include the ease of formulating lead and lag experiments for time series data, its simple interface for automation, and its extensibility to additional modeling techniques. We show how we used MLBlocks to quickly get results for two very different realworld data science problems. In the first, we used time series data from Massive Open Online Courses to cast many lead and lag formulations of predicting student dropout. In the second, we used MLBlocks' Discriminative Modeling functionality to find the best-performing model for predicting the destination of a car given its past trajectories. This later functionality is self-optimizing and will find the best model by exploring a space of 11 classification algorithms with a combination of Multi-Armed Bandit strategies and Gaussian Process optimizations, all in a distributed fashion in the cloud.
by Bryan Omar Collazo Santiago.
M. Eng.
Shukla, Ritesh. "Machine learning ecosystem : implications for business strategy centered on machine learning". Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/107342.
Testo completoCataloged from PDF version of thesis.
Includes bibliographical references (pages 48-50).
As interest for adopting machine learning as a core component of a business strategy increases, business owners face the challenge of integrating an uncertain and rapidly evolving technology into their organization, and depending on this for the success of their strategy. The field of Machine learning has a rich set of literature for modeling of technical systems that implement machine learning. This thesis attempts to connect the literature for business and technology and for evolution and adoption of technology to the emergent properties of machine learning systems. This thesis provides high-level levers and frameworks to better prepare business owners to adopt machine learning to satisfy their strategic goals.
by Ritesh Shukla.
S.M. in Engineering and Management
Huembeli, Patrick. "Machine learning for quantum physics and quantum physics for machine learning". Doctoral thesis, Universitat Politècnica de Catalunya, 2021. http://hdl.handle.net/10803/672085.
Testo completoLa investigación en la intersección del aprendizaje automático (machine learning, ML) y la física cuántica es una área en crecimiento reciente debido al éxito y las enormes expectativas de ambas áreas. ML es posiblemente una de las tecnologías más prometedoras que ha alterado y seguirá alterando muchos aspectos de nuestras vidas. Es casi seguro que la forma en que investigamos no es una excepción y el ML, con su capacidad sin precedentes para encontrar patrones ocultos en los datos ayudará a futuros descubrimientos científicos. La física cuántica, por otro lado, aunque a veces no es del todo intuitiva, es una de las teorías físicas más exitosas, y además estamos a punto de adoptar algunas tecnologías cuánticas en nuestra vida diaria. La física cuántica de los muchos cuerpos (many-body) es una subárea de la física cuántica donde estudiamos el comportamiento colectivo de partículas o átomos y la aparición de fenómenos que se deben a este comportamiento colectivo, como las fases de la materia. El estudio de las transiciones de fase de estos sistemas a menudo requiere cierta intuición de cómo podemos cuantificar el parámetro de orden de una fase. Los algoritmos de ML pueden imitar algo similar a la intuición al inferir conocimientos a partir de datos de ejemplo. Por lo tanto, pueden descubrir patrones que son invisibles para el ojo humano, lo que los convierte en excelentes candidatos para estudiar las transiciones de fase. Al mismo tiempo, se sabe que los dispositivos cuánticos pueden realizar algunas tareas computacionales exponencialmente más rápido que los ordenadores clásicos y pueden producir patrones de datos que son difíciles de simular en los ordenadores clásicos. Por lo tanto, existe la esperanza de que los algoritmos ML que se ejecutan en dispositivos cuánticos muestren una ventaja sobre su analógico clásico. Estudiamos dos caminos diferentes a lo largo de la vanguardia del ML y la física cuántica. Por un lado, estudiamos el uso de redes neuronales (neural network, NN) para clasificar las fases de la materia en sistemas cuánticos de muchos cuerpos. Por otro lado, estudiamos los algoritmos ML que se ejecutan en ordenadores cuánticos. La conexión entre ML para la física cuántica y la física cuántica para ML en esta tesis es un subárea emergente en ML: la interpretabilidad de los algoritmos de aprendizaje. Un ingrediente crucial en el estudio de las transiciones de fase con NN es una mejor comprensión de las predicciones de la NN, para inferir un modelo del sistema cuántico. Así pues, la interpretabilidad de la NN puede ayudarnos en este esfuerzo. El estudio de la interpretabilitad inspiró además un estudio en profundidad de la pérdida de aplicaciones de aprendizaje automático cuántico (quantum machine learning, QML) que también discutiremos. En esta tesis damos respuesta a las preguntas de cómo podemos aprovechar las NN para clasificar las fases de la materia y utilizamos un método que permite hacer una adaptación de dominio para transferir la "intuición" aprendida de sistemas sin ruido a sistemas con ruido. Para mapear el diagrama de fase de los sistemas cuánticos de muchos cuerpos de una manera totalmente no supervisada, estudiamos un método conocido de detección de anomalías que nos permite reducir la entrada humana al mínimo. También usaremos métodos de interpretabilidad para estudiar las NN que están entrenadas para distinguir fases de la materia para comprender si las NN están aprendiendo algo similar a un parámetro de orden y si su forma de aprendizaje puede ser más accesible para los humanos. Y finalmente, inspirados por la interpretabilidad de las NN clásicas, desarrollamos herramientas para estudiar los paisajes de pérdida de los circuitos cuánticos variacionales para identificar posibles diferencias entre los algoritmos ML clásicos y cuánticos que podrían aprovecharse para obtener una ventaja cuántica.
Cardamone, Dario. "Support Vector Machine a Machine Learning Algorithm". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017.
Cerca il testo completoKent, W. F. "Machine learning for parameter identification of electric induction machines". Thesis, University of Liverpool, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.399178.
Testo completoMenke, Joshua E. "Improving machine learning through oracle learning /". Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd1726.pdf.
Testo completoMenke, Joshua Ephraim. "Improving Machine Learning Through Oracle Learning". BYU ScholarsArchive, 2007. https://scholarsarchive.byu.edu/etd/843.
Testo completoMauricio, Palacio Sebastián. "Machine-Learning Applied Methods". Doctoral thesis, Universitat de Barcelona, 2020. http://hdl.handle.net/10803/669286.
Testo completoPace, Aaron J. "Guided Interactive Machine Learning". Diss., CLICK HERE for online access, 2006. http://contentdm.lib.byu.edu/ETD/image/etd1355.pdf.
Testo completoMontanez, George D. "Why Machine Learning Works". Research Showcase @ CMU, 2017. http://repository.cmu.edu/dissertations/1114.
Testo completoThomaz, Andrea Lockerd. "Socially guided machine learning". Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/36160.
Testo completoIncludes bibliographical references (p. 139-146).
Social interaction will be key to enabling robots and machines in general to learn new tasks from ordinary people (not experts in robotics or machine learning). Everyday people who need to teach their machines new things will find it natural for to rely on their interpersonal interaction skills. This thesis provides several contributions towards the understanding of this Socially Guided Machine Learning scenario. While the topic of human input to machine learning algorithms has been explored to some extent, prior works have not gone far enough to understand what people will try to communicate when teaching a machine and how algorithms and learning systems can be modified to better accommodate a human partner. Interface techniques have been based on intuition and assumptions rather than grounded in human behavior, and often techniques are not demonstrated or evaluated with everyday people. Using a computer game, Sophie's Kitchen, an experiment with human subjects provides several insights about how people approach the task of teaching a machine. In particular, people want to direct and guide an agent's exploration process, they quickly use the behavior of the agent to infer a mental model of the learning process, and they utilize positive and negative feedback in asymmetric ways.
(cont.) Using a robotic platform, Leonardo, and 200 people in follow-up studies of modified versions of the Sophie's Kitchen game, four research themes are developed. The use of human guidance in a machine learning exploration can be successfully incorporated to improve learning performance. Novel learning approaches demonstrate aspects of goal-oriented learning. The transparency of the machine learner can have significant effects on the nature of the instruction received from the human teacher, which in turn positively impacts the learning process. Utilizing asymmetric interpretations of positive and negative feedback from a human partner, can result in a more efficient and robust learning experience.
by Andrea Lockerd Thomaz.
Ph.D.
Leather, Hugh. "Machine learning in compilers". Thesis, University of Edinburgh, 2011. http://hdl.handle.net/1842/9810.
Testo completoArmani, Luca. "Machine Learning: Customer Segmentation". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24925/.
Testo completoDu, Buisson Lise. "Machine learning in astronomy". Master's thesis, University of Cape Town, 2015. http://hdl.handle.net/11427/15502.
Testo completoPunugu, Venkatapavani Pallavi. "Machine Learning in Neuroimaging". Thesis, State University of New York at Buffalo, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10284048.
Testo completoThe application of machine learning algorithms to analyze and determine disease related patterns in neuroimaging has emerged to be of extreme interest in Computer-Aided Diagnosis (CAD). This study is a small step towards categorizing Alzheimer's disease, Neurode-generative diseases, Psychiatric diseases and Cerebrovascular Small Vessel diseases using CAD. In this study, the SPECT neuroimages are pre-processed using powerful data reduction techniques such as Singular Value Decomposition (SVD), Independent Component Analysis (ICA) and Automated Anatomical Labeling (AAL). Each of the pre-processing methods is used in three machine learning algorithms namely: Artificial Neural Networks (ANNs), Support Vector Machines (SVMs) and k-Nearest Neighbors (k-nn) to recognize disease patterns and classify the diseases. While neurodegenerative diseases and psychiatric diseases overlap with a mix of diseases and resulted in fairly moderate classification, the classification between Alzheimer's disease and Cerebrovascular Small Vessel diseases yielded good results with an accuracy of up to 73.7%.
Lounici, Sofiane. "Watermarking machine learning models". Electronic Thesis or Diss., Sorbonne université, 2022. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2022SORUS282.pdf.
Testo completoThe protection of the intellectual property of machine learning models appears to be increasingly necessary, given the investments and their impact on society. In this thesis, we propose to study the watermarking of machine learning models. We provide a state of the art on current watermarking techniques, and then complement it by considering watermarking beyond image classification tasks. We then define forging attacks against watermarking for model hosting platforms and present a new fairness-based watermarking technique. In addition, we propose an implementation of the presented techniques
Thorén, Daniel. "Radar based tank level measurement using machine learning : Agricultural machines". Thesis, Linköpings universitet, Programvara och system, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-176259.
Testo completoRomano, Donato. "Machine Learning algorithms for predictive diagnostics applied to automatic machines". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/22319/.
Testo completoSchneider, C. "Using unsupervised machine learning for fault identification in virtual machines". Thesis, University of St Andrews, 2015. http://hdl.handle.net/10023/7327.
Testo completoJohansson, Richard. "Machine learning på tidsseriedataset : En utvärdering av modeller i Azure Machine Learning Studio". Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-71223.
Testo completoWu, Anjian M. B. A. Sloan School of Management. "Performance modeling of human-machine interfaces using machine learning". Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/122599.
Testo completoThesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019, In conjunction with the Leaders for Global Operations Program at MIT
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 70-71).
As the popularity of online retail expands, world-class electronic commerce (e-commerce) businesses are increasingly adopting collaborative robotics and Internet of Things (IoT) technologies to enhance fulfillment efficiency and operational advantage. E-commerce giants like Alibaba and Amazon are known to have smart warehouses staffed by both machines and human operators. The robotics systems specialize in transporting and maneuvering heavy shelves of goods to and from operators. Operators are left to higher-level cognitive tasks needed to process goods such as identification and complex manipulation of individual objects. Achieving high system throughput in these systems require harmonized interaction between humans and machines. The robotics systems must minimize time that operators are waiting for new work (idle time) and operators need to minimize time processing items (takt time). Over time, these systems will naturally generate extensive amounts of data. Our research provides insights into both using this data to design a machine-learning (ML) model of takt time, as well as exploring methods of interpreting insights from such a model. We start by presenting our iterative approach to developing a ML model that predicts the average takt of a group of operators at hourly intervals. Our final XGBoost model reached an out-of-sample performance of 4.01% mean absolute percent error (MAPE) using over 250,000 hours of historic data across multiple warehouses around the world. Our research will share methods to cross-examine and interpret the relationships learned by the model for business value. This can allow organizations to effectively quantify system trade-offs as well as identify root-causes of takt performance deviations. Finally, we will discuss the implications of our empirical findings.
by Anjian Wu.
M.B.A.
S.M.
M.B.A. Massachusetts Institute of Technology, Sloan School of Management
S.M. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Ohlsson, Caroline. "Exploring the potential of machine learning : How machine learning can support financial risk management". Thesis, Uppsala universitet, Företagsekonomiska institutionen, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-324684.
Testo completoVELLOSO, SUSANA ROSICH SOARES. "SQLLOMINING: FINDING LEARNING OBJECTS USING MACHINE LEARNING METHODS". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2007. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=10970@1.
Testo completoObjetos de Aprendizagem ou Learning Objects (LOs) são porções de material didático tais como textos que podem ser reutilizados na composição de outros objetos maiores (aulas ou cursos). Um dos problemas da reutilização de LOs é descobri-los em seus contextos ou documentos texto originais tais como livros, e artigos. Visando a obtenção de LOs, este trabalho apresenta um processo que parte da extração, tratamento e carga de uma base de dados textual e em seguida, baseando-se em técnicas de aprendizado de máquina, uma combinação de EM (Expectation-Maximization) e um classificador Bayesiano, classifica-se os textos extraídos. Tal processo foi implementado em um sistema chamado SQLLOMining, que usa SQL como linguagem de programação e técnicas de mineração de texto na busca de LOs.
Learning Objects (LOs) are pieces of instructional material like traditional texts that can be reused in the composition of more complex objects like classes or courses. There are some difficulties in the process of LO reutilization. One of them is to find pieces of documents that can be used like LOs. In this work we present a process that, in search for LOs, starts by extracting, transforming and loading a text database and then continue clustering these texts, using a machine learning methods that combines EM (Expectation- Maximization) and a Bayesian classifier. We implemented that process in a system called SQLLOMining that uses the SQL language and text mining methods in the search for LOs.
Grangier, David. "Machine learning for information retrieval". Lausanne : École polytechnique fédérale de Lausanne, 2008. http://aleph.unisg.ch/volltext/464553_Grangier_Machine_learning_for_information_retrieval.pdf.
Testo completoBaglioni, Cecilia. "Processi Gaussiani e Machine Learning". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20704/.
Testo completoLiao, Yihua. "Machine learning in intrusion detection /". For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2005. http://uclibs.org/PID/11984.
Testo completoStrobl, Carolin. "Statistical Issues in Machine Learning". Diss., lmu, 2008. http://nbn-resolving.de/urn:nbn:de:bvb:19-89043.
Testo completoStendahl, Jonas, e Johan Arnör. "Gesture Keyboard USING MACHINE LEARNING". Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-157141.
Testo completoMarknaden för mobila enheter expanderar kraftigt. Inmatning är en viktig del vid användningen av sådana produkter och en inmatningsmetod som är smidig och snabb är därför mycket intressant. Ett tangentbord för gester erbjuder användaren möjligheten att skriva genom att dra fingret över bokstäverna i det önskade ordet. I denna studie undersöks om tangentbord för gester kan förbättras med hjälp av maskininlärning. Ett tangentbord som använde en Multilayer Perceptron med backpropagation utvecklades och utvärderades. Resultaten visar att den undersökta implementationen inte är en optimal lösning på problemet att känna igen ord som matas in med hjälp av gester.
Bergkvist, Markus, e Tobias Olandersson. "Machine learning in simulated RoboCup". Thesis, Blekinge Tekniska Högskola, Institutionen för programvaruteknik och datavetenskap, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-3827.
Testo completoStefan, Vasic, e Lindgren Nicklas. "Product categorisation using machine learning". Thesis, KTH, Data- och elektroteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-209031.
Testo completoMaskininlärning är en metod inom datavetenskap vars uppgift är att analysera stora mängder data och hitta dolda mönster och gemensamma karaktärsdrag. Företag har idag ofta tillgång till stora mängder data som i sin tur kan innehålla värdefull information. Navetti AB vill undersöka möjligheten att automatisera sin produktkategorisering genom att utvärdera olika typer av maskininlärnings- algoritmer. Detta skulle dramatiskt öka effektiviteten både tidsmässigt och ekonomiskt. Resultatet blev tre prototyper som implementerar tre olika maskininlärnings-algoritmer som automatiserat kategoriserar produkter. Prototyperna testades och utvärderades utifrån dess förmåga att kategorisera och dess prestanda i form av hastighet. Olika tekniker som används för att förbereda data analyseras och utvärderas. En analys av testerna visar att med tillräckligt mycket data och en passande algoritm så är det möjligt att automatisera den manuella kategoriseringen.
Bhat, Sooraj. "Syntactic foundations for machine learning". Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47700.
Testo completoParson, Rupert. "Machine learning of changing concepts". Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.393757.
Testo completoSwere, Erick A. R. "Machine learning in embedded systems". Thesis, Loughborough University, 2008. https://dspace.lboro.ac.uk/2134/4969.
Testo completo林謀楷 e Mau-kai Lam. "Inductive machine learning with bias". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1994. http://hub.hku.hk/bib/B31212426.
Testo completoPantziarka, P. "Machine learning and data validation". Thesis, University of Surrey, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.425812.
Testo completoFriberg, Christin. "Analysing ConformationalEnsembles using Machine Learning". Thesis, KTH, Skolan för teknikvetenskap (SCI), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-231781.
Testo completoG-proteinkopplade receptorer är delaktiga i flertalet sjukdomar och agerar måltavla förett stort antal läkemedel. Att utveckla metoder för att bättre förstå dynamiken hos deproteiner som sköter kommunikationen över cellens membran är därför mycket viktigt. Idenna studie analyseras data från molekyldynamiska simuleringar av !2-adrenergena receptorermed syfte att låta ett neuralt nätverk lära sig identifiera receptorn med avseendepå dess bindningsmekanism. Proteinet studerades som konformationella ensembler föratt hitta receptorns olika bindningstillstånd. Studien visar att denna konceptuellt enklametod kan användas för att analysera den komplexa molekylära process som sker vidläkemedelsbindning.
OGURI, PEDRO. "MACHINE LEARNING FOR SENTIMENT CLASSIFICATION". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2006. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=9947@1.
Testo completoSentiment Analysis é um problema de categorização de texto no qual deseja-se identificar opiniões favoráveis e desfavoráveis com relação a um tópico. Um exemplo destes tópicos de interesse são organizações e seus produtos. Neste problema, documentos são classificados pelo sentimento, conotação, atitudes e opiniões ao invés de se restringir aos fatos descritos neste. O principal desafio em Sentiment Classification é identificar como sentimentos são expressados em textos e se tais sentimentos indicam uma opinião positiva (favorável) ou negativa (desfavorável) com relação a um tópico. Devido ao crescente volume de dados disponível na Web, onde todos tendem a ser geradores de conteúdo e expressarem opiniões sobre os mais variados assuntos, técnicas de Aprendizado de Máquina vem se tornando cada vez mais atraentes. Nesta dissertação investigamos métodos de Aprendizado de Máquina para Sentiment Analysis. Apresentamos alguns modelos de representação de documentos como saco de palavras e N-grama. Testamos os classificadores SVM (Máquina de Vetores Suporte) e Naive Bayes com diferentes modelos de representação textual e comparamos seus desempenhos.
Sentiment Analysis is a text categorization problem in which we want to identify favorable and unfavorable opinions towards a given topic. Examples of such topics are organizations and its products. In this problem, docu- ments are classifed according to their sentiment, connotation, attitudes and opinions instead of being limited to the facts described in it. The main challenge in Sentiment Classification is identifying how sentiments are expressed in texts and whether they indicate a positive (favorable) or negative (unfavorable) opinion towards a topic. Due to the growing volume of information available online in an environment where we all tend to be content generators and express opinions on a variety of subjects, Machine Learning techniques have become more and more attractive. In this dissertation, we investigate Machine Learning methods applied to Sentiment Analysis. We present document representation models such as bag-of-words and N-grams.We compare the performance of the Naive Bayes and the Support Vector Machine classifiers for each proposed model
Huang, Zongyan. "Machine learning and computer algebra". Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709397.
Testo completoFerreira, Paulo Victor Rodrigues. "SRML: Space Radio Machine Learning". Digital WPI, 2017. https://digitalcommons.wpi.edu/etd-dissertations/199.
Testo completoHa, Youngmin. "Machine learning in quantitative finance". Thesis, University of Glasgow, 2017. http://theses.gla.ac.uk/8558/.
Testo completoRouet-Leduc, Bertrand. "Machine learning for materials science". Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/267987.
Testo completoShih, Lawrence Kai 1974. "Machine learning on Web documents". Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/28331.
Testo completoIncludes bibliographical references (leaves 111-115).
The Web is a tremendous source of information: so tremendous that it becomes difficult for human beings to select meaningful information without support. We discuss tools that help people deal with web information, by, for example, blocking advertisements, recommending interesting news, and automatically sorting and compiling documents. We adapt and create machine learning algorithms for use with the Web's distinctive structures: large-scale, noisy, varied data with potentially rich, human-oriented features. We adapt two standard classification algorithms, the slow but powerful support vector machine and the fast but inaccurate Naive Bayes, to make them more effective for the Web. The support vector machine, which cannot currently handle the large amount of Web data potentially available, is sped up by "bundling" the classifier inputs to reduce the input size. The Naive Bayes classifier is improved through a series of three techniques aimed at fixing some of the severe, inaccurate assumptions Naive Bayes makes. Classification can also be improved by exploiting the Web's rich, human-oriented structure, including the visual layout of links on a page and the URL of a document. These "tree-shaped features" are placed in a Bayesian mutation model and learning is accomplished with a fast, online learning algorithm for the model. These new methods are applied to a personalized news recommendation tool, "the Daily You." The results of a 176 person user-study of news preferences indicate that the new Web-centric techniques out-perform classifiers that use traditional text algorithms and features. We also show that our methods produce an automated ad-blocker that performs as well as a hand-coded commercial ad-blocker.
by Lawrence Kai Shih.
Ph.D.
Evgeniou, Theodoros K. (Theodoros Kostantinos) 1974. "Learning with kernel machine architectures". Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/86442.
Testo completoIncludes bibliographical references (p. 99-106).
by Theodoros K. Evgeniou.
Ph.D.
Verleyen, Wim. "Machine learning for systems pathology". Thesis, University of St Andrews, 2013. http://hdl.handle.net/10023/4512.
Testo completoAinali, Chrysanthi. "Machine learning for translational medicine". Thesis, King's College London (University of London), 2013. https://kclpure.kcl.ac.uk/portal/en/theses/machine-learning-for-translational-medicine(c0dc2716-6211-4273-a5be-98eb1032f8da).html.
Testo completoArmond, Kenneth C. Jr. "Distributed Support Vector Machine Learning". ScholarWorks@UNO, 2008. http://scholarworks.uno.edu/td/711.
Testo completo