Articoli di riviste sul tema "Machine learning potential"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Machine learning potential".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.
Mueller, Tim, Alberto Hernandez e Chuhong Wang. "Machine learning for interatomic potential models". Journal of Chemical Physics 152, n. 5 (7 febbraio 2020): 050902. http://dx.doi.org/10.1063/1.5126336.
Testo completoNg, Wenfa. "Evaluating the Potential of Applying Machine Learning Tools to Metabolic Pathway Optimization". Biotechnology and Bioprocessing 2, n. 9 (2 novembre 2021): 01–07. http://dx.doi.org/10.31579/2766-2314/060.
Testo completoBarbour, Dennis L., e Jan-Willem A. Wasmann. "Performance and Potential of Machine Learning Audiometry". Hearing Journal 74, n. 3 (26 febbraio 2021): 40,43,44. http://dx.doi.org/10.1097/01.hj.0000737592.24476.88.
Testo completoTherrien, Audrey C., Berthié Gouin-Ferland e Mohammad Mehdi Rahimifar. "Potential of edge machine learning for instrumentation". Applied Optics 61, n. 8 (2 marzo 2022): 1930. http://dx.doi.org/10.1364/ao.445798.
Testo completoAwan, Kamran H., S. Satish Kumar e Indu Bharkavi SK. "Potential Role of Machine Learning in Oncology". Journal of Contemporary Dental Practice 20, n. 5 (2019): 529–30. http://dx.doi.org/10.5005/jp-journals-10024-2551.
Testo completoDral, Pavlo O., Alec Owens, Alexey Dral e Gábor Csányi. "Hierarchical machine learning of potential energy surfaces". Journal of Chemical Physics 152, n. 20 (29 maggio 2020): 204110. http://dx.doi.org/10.1063/5.0006498.
Testo completoWu, Yuexiang. "Potential pulsars prediction based on machine learning". Theoretical and Natural Science 12, n. 1 (17 novembre 2023): 193–201. http://dx.doi.org/10.54254/2753-8818/12/20230466.
Testo completoAschepkov, Valeriy. "METHODS OF MACHINE LEARNING IN MODERN METROLOGY". Measuring Equipment and Metrology 85 (2024): 57–60. http://dx.doi.org/10.23939/istcmtm2024.01.057.
Testo completoZelinska, Snizhana. "Machine learning: technologies and potential application at mining companies". E3S Web of Conferences 166 (2020): 03007. http://dx.doi.org/10.1051/e3sconf/202016603007.
Testo completoSarkar, Soumyadip. "Quantum Machine Learning: A Review". International Journal for Research in Applied Science and Engineering Technology 11, n. 3 (31 marzo 2023): 352–54. http://dx.doi.org/10.22214/ijraset.2023.49421.
Testo completoM, Shah,. "Demystifying Machine Learning". Saudi Journal of Engineering and Technology 9, n. 07 (9 luglio 2024): 299–303. http://dx.doi.org/10.36348/sjet.2024.v09i07.004.
Testo completoSrinivasaiah, Bharath. "The Power of Personalized Healthcare: Harnessing the Potential of Machine Learning in Precision Medicine". International Journal of Science and Research (IJSR) 13, n. 5 (5 maggio 2024): 426–29. http://dx.doi.org/10.21275/sr24506012313.
Testo completoChinnala Balakrishna e Rambabu Bommisetti. "Detecting psychological uncertainty using machine learning". International Journal of Science and Research Archive 12, n. 2 (30 luglio 2024): 1365–70. http://dx.doi.org/10.30574/ijsra.2024.12.2.1399.
Testo completoNikoulis, Giorgos, Jesper Byggmästar, Joseph Kioseoglou, Kai Nordlund e Flyura Djurabekova. "Machine-learning interatomic potential for W–Mo alloys". Journal of Physics: Condensed Matter 33, n. 31 (18 giugno 2021): 315403. http://dx.doi.org/10.1088/1361-648x/ac03d1.
Testo completoWang, Peng-Ju, Jun-Yu Fan, Yan Su e Ji-Jun Zhao. "Energetic potential of hexogen constructed by machine learning". Acta Physica Sinica 69, n. 23 (2020): 238702. http://dx.doi.org/10.7498/aps.69.20200690.
Testo completoMukherjee, Debashis, e Rajesh Biswal. "Machine Learning in Automotive Data Potential, Analytics Power". Auto Tech Review 4, n. 5 (maggio 2015): 44–49. http://dx.doi.org/10.1365/s40112-015-0916-7.
Testo completoSun, Lei, Badong Chen, Kar-Ann Toh e Zhiping Lin. "Sequential extreme learning machine incorporating survival error potential". Neurocomputing 155 (maggio 2015): 194–204. http://dx.doi.org/10.1016/j.neucom.2014.12.029.
Testo completoLorena, Ana C., Luis F. O. Jacintho, Marinez F. Siqueira, Renato De Giovanni, Lúcia G. Lohmann, André C. P. L. F. de Carvalho e Missae Yamamoto. "Comparing machine learning classifiers in potential distribution modelling". Expert Systems with Applications 38, n. 5 (maggio 2011): 5268–75. http://dx.doi.org/10.1016/j.eswa.2010.10.031.
Testo completoSharifipour, Behzad, Bahram Gholinejad, Ataollah Shirzadi, Himan Shahabi, Nadhir Al-Ansari, Asghar Farajollahi, Fatemeh Mansorypour e John J. Clague. "Rangeland species potential mapping using machine learning algorithms". Ecological Engineering 189 (aprile 2023): 106900. http://dx.doi.org/10.1016/j.ecoleng.2023.106900.
Testo completoYu, Jingyi. "Product potential user prediction based on machine learning". Highlights in Science, Engineering and Technology 92 (10 aprile 2024): 146–51. http://dx.doi.org/10.54097/2h70m008.
Testo completoMei, Haojie, Luyao Cheng, Liang Chen, Feifei Wang, Jinfu Li e Lingti Kong. "Development of machine learning interatomic potential for zinc". Computational Materials Science 233 (gennaio 2024): 112723. http://dx.doi.org/10.1016/j.commatsci.2023.112723.
Testo completoLee, Chien-Chang, James Yeongjun Park e Wan-Ting Hsu. "Bridging expertise with machine learning and automated machine learning in clinical medicine". Annals of the Academy of Medicine, Singapore 53, n. 3 - Correct DOI (27 marzo 2024): 129–31. http://dx.doi.org/10.47102/annals-acadmedsg.202481.
Testo completoLee, Chien-Chang, James Yeongjun Park e Wan-Ting Hsu. "Bridging expertise with machine learning and automated machine learning in clinical medicine". Annals of the Academy of Medicine, Singapore 53, n. 3 (27 marzo 2024): 129–31. http://dx.doi.org/10.47102/https://doi.org/10.47102/annals-acadmedsg.202481.
Testo completoSamahitha Kaliyuru Ravi, Sameera Kaliyuru Ravi e A. Hema Prabha. "Advent of machine learning in autonomous vehicles". International Journal of Science and Research Archive 13, n. 1 (30 settembre 2024): 1219–26. http://dx.doi.org/10.30574/ijsra.2024.13.1.1760.
Testo completoKamoun-Abid, Ferdaous, Hounaida Frikha, Amel Meddeb-Makhoulf e Faouzi Zarai. "Automating cloud virtual machines allocation via machine learning". Indonesian Journal of Electrical Engineering and Computer Science 35, n. 1 (1 luglio 2024): 191. http://dx.doi.org/10.11591/ijeecs.v35.i1.pp191-202.
Testo completoElhadary, Mohamed, Mervat Mattar, Khalil Al Farsi, Salem Alshemmari, Basel ElSayed, Omar Metwalli, Amgad Elshoeibi, Ahmed Abdelrehim Badr, Awni Alshurafa e Mohamed A. Yassin. "Machine Learning in CLL". Blood 142, Supplement 1 (28 novembre 2023): 7185. http://dx.doi.org/10.1182/blood-2023-179388.
Testo completoPrakash, Ujjwal. "Advanced Dietitian Using Machine Learning". INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, n. 05 (8 maggio 2024): 1–5. http://dx.doi.org/10.55041/ijsrem33347.
Testo completoShi, Yang. "Research on the Stock Price Prediction Using Machine Learning". Advances in Economics, Management and Political Sciences 22, n. 1 (13 settembre 2023): 174–79. http://dx.doi.org/10.54254/2754-1169/22/20230307.
Testo completoPatil, Rohit, Priyadarshani Alandikar, Vaibhav Chaudhari, Pradnya Patil e Prof Swarupa Deshpande. "Water Demand Prediction Using Machine Learning". International Journal for Research in Applied Science and Engineering Technology 10, n. 12 (31 dicembre 2022): 122–28. http://dx.doi.org/10.22214/ijraset.2022.47797.
Testo completoBiswal M, Manas. "The Potential of Machine Learning for Future Mars Exploration". Acceleron Aerospace Journal 1, n. 6 (30 dicembre 2023): 119–20. http://dx.doi.org/10.61359/11.2106-2326.
Testo completoRavindran, Anjana V., Anjana V. J e Meenakshi P. "Prediction of Learning Disability Using Machine Learning". International Journal for Research in Applied Science and Engineering Technology 11, n. 8 (31 agosto 2023): 1248–54. http://dx.doi.org/10.22214/ijraset.2023.55332.
Testo completoSharma, Pratibha, e Manisha Joshi. "AWS Machine Learning Services". Turkish Journal of Computer and Mathematics Education (TURCOMAT) 10, n. 2 (10 settembre 2019): 1171–74. http://dx.doi.org/10.61841/turcomat.v10i2.14390.
Testo completoNagaraju, Dr R. "XSS Attack Detection using Machine Learning Algorithms". INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 07, n. 12 (1 dicembre 2023): 1–11. http://dx.doi.org/10.55041/ijsrem27487.
Testo completoWilliam, Carter, Choki Wangmo e Anjali Ranjan. "Unravelling the application of machine learning in cancer biomarker discovery". Cancer Insight 2, n. 1 (14 giugno 2023): 1–8. http://dx.doi.org/10.58567/ci02010001.
Testo completoLevantesi, Susanna, Andrea Nigri e Gabriella Piscopo. "Longevity risk management through Machine Learning: state of the art". Insurance Markets and Companies 11, n. 1 (25 novembre 2020): 11–20. http://dx.doi.org/10.21511/ins.11(1).2020.02.
Testo completoVeeramani, Sindhu, S. M. Ramesh e B. Gomathy. "Exploring the Potential of Machine Learning in Healthcare Accuracy Improvement". WSEAS TRANSACTIONS ON COMPUTERS 22 (31 dicembre 2023): 374–79. http://dx.doi.org/10.37394/23205.2023.22.42.
Testo completoLi, Keqin, Peng Zhao, Shuying Dai, Armando Zhu, Bo Hong, Jiabei Liu, Changsong Wei, Wenqian Huang e Yang Zhang. "Exploring the Impact of Quantum Computing on Machine Learning Performance". Middle East Journal of Applied Science & Technology 07, n. 02 (2024): 145–61. http://dx.doi.org/10.46431/mejast.2024.7215.
Testo completoPatil, Bhagyashree A., Sri Adithya S e Dr Jayanthi M G. "Detection of Malware using Machine Learning Approach". International Journal for Research in Applied Science and Engineering Technology 11, n. 8 (31 agosto 2023): 736–41. http://dx.doi.org/10.22214/ijraset.2023.55233.
Testo completoRamesh, Banoth, G. Srinivas, P. Ram Praneeth Reddy, M. D. Huraib Rasool, Divya Rawat e Madhulita Sundaray. "Feasible Prediction of Multiple Diseases using Machine Learning". E3S Web of Conferences 430 (2023): 01051. http://dx.doi.org/10.1051/e3sconf/202343001051.
Testo completoArora, Aaryan, e Nirmalya Basu. "Machine Learning in Modern Healthcare". International Journal of Advanced Medical Sciences and Technology 3, n. 4 (30 giugno 2023): 12–18. http://dx.doi.org/10.54105/ijamst.d3037.063423.
Testo completoLiu, Jinyan, Guanghao Zhang, Jianyong Wang, Hong Zhang e Ye Han. "Research on Cu-Sn machine learning interatomic potential with active learning strategy". Computational Materials Science 246 (gennaio 2025): 113450. http://dx.doi.org/10.1016/j.commatsci.2024.113450.
Testo completoChen, Samuel Yen-Chi, e Shinjae Yoo. "Federated Quantum Machine Learning". Entropy 23, n. 4 (13 aprile 2021): 460. http://dx.doi.org/10.3390/e23040460.
Testo completoMukilan, K., K. Thaiyalnayaki, Yagya Dutta Dwivedi, J. Samson Isaac, Amarjeet Poonia, Arvind Sharma, Essam A. Al-Ammar, Saikh Mohammad Wabaidur, B. B. Subramanian e Adane Kassa. "Prediction of Rooftop Photovoltaic Solar Potential Using Machine Learning". International Journal of Photoenergy 2022 (25 maggio 2022): 1–8. http://dx.doi.org/10.1155/2022/1541938.
Testo completoVaganov, A. V., V. F. Zaikov, O. S. Krotova, A. I. Musokhranov, Z. V. Pokalyakin e L. A. Khvorova. "Modeling a Potential Plant Habitat Using Machine Learning Methods". Izvestiya of Altai State University, n. 4(126) (9 settembre 2022): 85–92. http://dx.doi.org/10.14258/izvasu(2022)4-13.
Testo completoZennaro, Federica, Elisa Furlan, Christian Simeoni, Silvia Torresan, Sinem Aslan, Andrea Critto e Antonio Marcomini. "Exploring machine learning potential for climate change risk assessment". Earth-Science Reviews 220 (settembre 2021): 103752. http://dx.doi.org/10.1016/j.earscirev.2021.103752.
Testo completoCesarini, Luigi, Rui Figueiredo, Beatrice Monteleone e Mario L. V. Martina. "The potential of machine learning for weather index insurance". Natural Hazards and Earth System Sciences 21, n. 8 (11 agosto 2021): 2379–405. http://dx.doi.org/10.5194/nhess-21-2379-2021.
Testo completoErharter, Georg H., Jonas Weil, Franz Tschuchnigg e Thomas Marcher. "Potential applications of machine learning for BIM in tunnelling". Geomechanics and Tunnelling 15, n. 2 (aprile 2022): 216–21. http://dx.doi.org/10.1002/geot.202100076.
Testo completoIvanciuc, Ovidiu. "Weka Machine Learning for Predicting the Phospholipidosis Inducing Potential". Current Topics in Medicinal Chemistry 8, n. 18 (1 dicembre 2008): 1691–709. http://dx.doi.org/10.2174/156802608786786589.
Testo completoRowe, Patrick, Volker L. Deringer, Piero Gasparotto, Gábor Csányi e Angelos Michaelides. "An accurate and transferable machine learning potential for carbon". Journal of Chemical Physics 153, n. 3 (21 luglio 2020): 034702. http://dx.doi.org/10.1063/5.0005084.
Testo completoReich, Yoram, e Steven J. Fenves. "The potential of machine learning techniques for expert systems". Artificial Intelligence for Engineering Design, Analysis and Manufacturing 3, n. 3 (agosto 1989): 175–93. http://dx.doi.org/10.1017/s0890060400001219.
Testo completo