Segui questo link per vedere altri tipi di pubblicazioni sul tema: Low temperature heat valorisation.

Articoli di riviste sul tema "Low temperature heat valorisation"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Low temperature heat valorisation".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.

1

Buchin, Oliver, e Felix Ziegler. "Valorisation of low-temperature heat: Impact of the heat sink on performance and economics". Applied Thermal Engineering 50, n. 2 (febbraio 2013): 1543–48. http://dx.doi.org/10.1016/j.applthermaleng.2011.10.002.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Laurenz, Eric, Gerrit Füldner, Lena Schnabel e Gerhard Schmitz. "A Novel Approach for the Determination of Sorption Equilibria and Sorption Enthalpy Used for MOF Aluminium Fumarate with Water". Energies 13, n. 11 (11 giugno 2020): 3003. http://dx.doi.org/10.3390/en13113003.

Testo completo
Abstract (sommario):
Adsorption chillers offer an environmentally friendly solution for the valorisation of waste or solar heat for cooling demands. A recent application is high efficiency data centre cooling, where heat from CPUs is used to drive the process, providing cooling for auxiliary loads. The metal organic framework aluminium fumarate with water is potentially a suitable material pair for this low temperature driven application. A targeted heat exchanger design is a prerequisite for competitiveness, requiring, amongst other things, a sound understanding of adsorption equilibria and adsorption enthalpy. A novel method is employed for their determination based on small isothermal and isochoric state changes, applied with an apparatus developed initially for volume swing frequency response measurement, to samples with a binder-based adsorbent coating. The adsorption enthalpy is calculated through the Clausius–Clapeyron equation from the obtained slopes of the isotherm and isobar, while the absolute uptake is determined volumetrically. The isotherm confirms the step-like form known for aluminium fumarate, with a temperature dependent inflection point at p rel ≈ 0.25, 0.28 and 0.33 for 30 °C, 40 °C and 60 °C. The calculated differential enthalpy of adsorption is 2.90 ± 0.05 MJ/kg (52.2 ± 1.0 kJ/mol) on average, which is about 10–15% higher than expected by a simple Dubinin approximation.
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Grocholski, Brent. "Recovering low-temperature heat". Science 370, n. 6514 (15 ottobre 2020): 305.2–305. http://dx.doi.org/10.1126/science.370.6514.305-b.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Vasiliev, L. L. "Low-temperature heat pipes". Journal of Heat Recovery Systems 5, n. 3 (gennaio 1985): 203–16. http://dx.doi.org/10.1016/0198-7593(85)90078-5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Beyermann, W. P., M. F. Hundley, J. D. Thompson, F. N. Diederich e G. Grüner. "Low-temperature specific heat ofC60". Physical Review Letters 68, n. 13 (30 marzo 1992): 2046–49. http://dx.doi.org/10.1103/physrevlett.68.2046.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Lasjaunias, J. C., M. Saint-Paul, O. Laborde, O. Thomas, J. P. Sénateur e R. Madar. "Low-temperature specific heat ofMoSi2". Physical Review B 37, n. 17 (15 giugno 1988): 10364–66. http://dx.doi.org/10.1103/physrevb.37.10364.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Feng, Y. P., A. Jin, D. Finotello, K. A. Gillis, M. H. W. Chan e J. E. Greedan. "Low-temperature specific heat ofLa1.85Sr0.15CuO4andLa2CuO4". Physical Review B 38, n. 10 (1 ottobre 1988): 7041–44. http://dx.doi.org/10.1103/physrevb.38.7041.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Oeschler, N., S. Hartmann, A. P. Pikul, C. Krellner, C. Geibel e F. Steglich. "Low-temperature specific heat of". Physica B: Condensed Matter 403, n. 5-9 (aprile 2008): 1254–56. http://dx.doi.org/10.1016/j.physb.2007.10.119.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Tokiwa, Y., F. Ronning, V. Fritsch, R. Movshovich, J. D. Thompson e J. L. Sarrao. "Low-temperature specific heat of". Journal of Magnetism and Magnetic Materials 310, n. 2 (marzo 2007): 325–27. http://dx.doi.org/10.1016/j.jmmm.2006.10.022.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Hamilton, J. J., E. L. Keatley, H. L. Ju, A. K. Raychaudhuri, V. N. Smolyaninova e R. L. Greene. "Low-temperature specific heat ofLa0.67Ba0.33MnO3andLa0.8Ca0.2MnO3". Physical Review B 54, n. 21 (1 dicembre 1996): 14926–29. http://dx.doi.org/10.1103/physrevb.54.14926.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
11

Seyfouri, Zeynab, Mehran Ameri e Mozaffar Ali Mehrabian. "A Totally Heat-Driven Refrigeration System Using Low-Temperature Heat Sources for Low-Temperature Applications". International Journal of Air-Conditioning and Refrigeration 27, n. 02 (giugno 2019): 1950012. http://dx.doi.org/10.1142/s2010132519500123.

Testo completo
Abstract (sommario):
In the present study, a totally heat-driven refrigeration system is proposed and thermodynamically analyzed. This system uses a low-temperature heat source such as geothermal energy or solar energy to produce cooling at freezing temperatures. The proposed system comprises a Rankine cycle (RC) and a hybrid GAX (HGAX) refrigeration cycle, in which the RC provides the power requirement of the HGAX cycle. An ammonia–water mixture is used in both RC and HGAX cycles as the working fluid. A comparative study is conducted in which the proposed system is compared with two other systems using GAX cycle and/or a single stage cycle, as the refrigeration cycle. The study shows that the proposed system is preferred to produce cooling at temperatures from 2∘C to [Formula: see text]C. A detailed parametric analysis of the proposed system is carried out. The results of the analysis show that the system can produce cooling at [Formula: see text]C using a low-temperature heat source at 133.5∘C with the exergy efficiency of about 20% without any input power. By increasing the heat source temperature to 160∘C, an exergy efficiency of 25% can be achieved.
Gli stili APA, Harvard, Vancouver, ISO e altri
12

Matsuda, Satoshi, Kazuhiko Yamaya, Yutaka Abe e Takashi Sambongi. "Low Temperature Specific Heat of ZrTe3". Japanese Journal of Applied Physics 26, S3-2 (1 gennaio 1987): 973. http://dx.doi.org/10.7567/jjaps.26s3.973.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
13

Andronikashvili, E. L., e G. M. Mrevlishvili. "Low-temperature heat capacity of DNA". Uspekhi Fizicheskih Nauk 150, n. 12 (1986): 625. http://dx.doi.org/10.3367/ufnr.0150.198612h.0625.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
14

Zorovic, Dinko, e Aleksandar Zorovic. "The Exploitation of Low Temperature Heat". Key Engineering Materials 20-28 (gennaio 1991): 843–46. http://dx.doi.org/10.4028/www.scientific.net/kem.20-28.843.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
15

Stupp, S. E., M. E. Reeves, D. M. Ginsberg, D. G. Hinks, B. Dabrowski e K. G. Vandervoort. "Low-temperature specific heat of polycrystallineBa0.6K0.4BiO3". Physical Review B 40, n. 16 (1 dicembre 1989): 10878–81. http://dx.doi.org/10.1103/physrevb.40.10878.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
16

Langhammer, C., F. Steglich, M. Lang e T. Sasaki. "Low-temperature specific heat of Sr2RuO4". European Physical Journal B 26, n. 4 (aprile 2002): 413–16. http://dx.doi.org/10.1140/epjb/e20020108.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
17

Andronikashvili, É. L., e George M. Mrevlishvili. "Low-temperature heat capacity of DNA". Soviet Physics Uspekhi 29, n. 12 (31 dicembre 1986): 1151–52. http://dx.doi.org/10.1070/pu1986v029n12abeh003626.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
18

Glavin, B. A. "Low-Temperature Heat Transfer in Nanowires". Physical Review Letters 86, n. 19 (7 maggio 2001): 4318–21. http://dx.doi.org/10.1103/physrevlett.86.4318.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
19

Suzuki, Eriko, Kunihisa Nakajima, Masahiko Osaka, Yuji Ohishi, Hiroaki Muta e Ken Kurosaki. "Low temperature heat capacity of Cs2Si4O9". Journal of Nuclear Science and Technology 57, n. 7 (13 febbraio 2020): 852–57. http://dx.doi.org/10.1080/00223131.2020.1727374.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
20

Gavrichev, K. S., V. N. Guskov, J. H. Greenberg, T. Feltgen, M. Fiederle e K. W. Benz. "Low-temperature heat capacity of ZnTe". Journal of Chemical Thermodynamics 34, n. 12 (dicembre 2002): 2041–47. http://dx.doi.org/10.1016/s0021-9614(02)00256-2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Dahlhauser, Karl J., A. C. Anderson e George Mozurkewich. "Excess low-temperature specific heat inK0.3MoO3". Physical Review B 34, n. 6 (15 settembre 1986): 4432–35. http://dx.doi.org/10.1103/physrevb.34.4432.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
22

Castellanos-Guzman, A. G., V. M. Soto García, L. Bayarjargal, E. Haussühl e B. Winkler. "Low temperature heat capacities of boracites". Ferroelectrics 498, n. 1 (18 maggio 2016): 36–39. http://dx.doi.org/10.1080/00150193.2016.1166849.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Pattalwar, S. M., R. N. Dixit, S. Y. Shete e B. K. Basu. "Low-temperature specific heat of PdPb2". Physical Review B 38, n. 10 (1 ottobre 1988): 7067–69. http://dx.doi.org/10.1103/physrevb.38.7067.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
24

Ho, James C., Royce C. Liang e D. P. Dandekar. "Low‐temperature heat capacities of Ni3Al". Journal of Applied Physics 59, n. 4 (15 febbraio 1986): 1397–98. http://dx.doi.org/10.1063/1.336488.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
25

Affronte, M., J. C. Lasjaunias, A. Cornia e A. Caneschi. "Low-temperature specific heat ofFe6andFe10molecular magnets". Physical Review B 60, n. 2 (1 luglio 1999): 1161–66. http://dx.doi.org/10.1103/physrevb.60.1161.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
26

Thiriet, C., R. J. M. Konings e F. Wastin. "Low temperature heat capacity of PuPO4". Journal of Nuclear Materials 344, n. 1-3 (settembre 2005): 56–60. http://dx.doi.org/10.1016/j.jnucmat.2005.04.016.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
27

Taniguchi, T., H. Morimoto, Y. Miyako e S. Ramakrishnan. "Low-temperature specific heat of UNiSi2". Journal of Magnetism and Magnetic Materials 177-181 (gennaio 1998): 55–56. http://dx.doi.org/10.1016/s0304-8853(97)00425-3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
28

Nakamura, S., O. Suzuki, T. Goto, T. Matsumura, T. Suzuki, S. Sakatsume e S. Kunii. "Low-temperature specific heat of Ce0.5La0.5B6". Physica B: Condensed Matter 230-232 (febbraio 1997): 233–35. http://dx.doi.org/10.1016/s0921-4526(96)00660-6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
29

Nambudripad, N., e S. K. Dhar. "Low temperature heat capacity of YBa2Cu3O7". Pramana 29, n. 4 (ottobre 1987): L433—L435. http://dx.doi.org/10.1007/bf02845783.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
30

CASPARY, R., P. HELLMANN, T. WOLF e F. STEGLICH. "LOW TEMPERATURE SPECIFIC HEAT OF YBa2Cu3O7". International Journal of Modern Physics B 07, n. 01n03 (gennaio 1993): 166–69. http://dx.doi.org/10.1142/s0217979293000378.

Testo completo
Abstract (sommario):
We show specific heat data in magnetic fields to B = 8T on new polycrystals with different oxygen content and compare them with earlier results. The analysis reveals a field dependent residual linear term which is discussed within theoretical models of Bulaevskii and for a spin-glass.
Gli stili APA, Harvard, Vancouver, ISO e altri
31

Ho, J. C., H. H. Hamdeh, M. W. Barsoum e T. El-Raghy. "Low temperature heat capacity of Ti3SiC2". Journal of Applied Physics 85, n. 11 (giugno 1999): 7970–71. http://dx.doi.org/10.1063/1.370618.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
32

Berezovskii, Gleb A., Valeri A. Drebushchak e Tatyana A. Kravchenko. "Low-temperature heat capacity of pentlandite". American Mineralogist 86, n. 10 (ottobre 2001): 1312–13. http://dx.doi.org/10.2138/am-2001-1020.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
33

Jin, D. S., T. F. Rosenbaum, J. S. Kim e G. R. Stewart. "Low-temperature specific heat ofU1−xThxBe13". Physical Review B 49, n. 2 (1 gennaio 1994): 1540–43. http://dx.doi.org/10.1103/physrevb.49.1540.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
34

Bagot, D., S. Rolland, R. Triboulet e R. Granger. "Low-temperature specific heat in Hg0.88Zn0.12Te". Semiconductor Science and Technology 8, n. 5 (1 maggio 1993): 638–42. http://dx.doi.org/10.1088/0268-1242/8/5/004.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
35

Aldzhanov, M. A., A. A. Abdurragimov, S. G. Sultanova e M. D. Nadzhafzade. "Low-temperature specific heat of TlCrS2". Physics of the Solid State 49, n. 2 (febbraio 2007): 320–21. http://dx.doi.org/10.1134/s1063783407020229.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
36

Dahn, D. C., J. F. Carolan e R. R. Haering. "Low-temperature specific heat ofLixNbS2intercalation compounds". Physical Review B 33, n. 8 (15 aprile 1986): 5214–20. http://dx.doi.org/10.1103/physrevb.33.5214.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
37

Brandato, D. E., M. A. Boff, G. L. F. Fraga e T. A. Grandi. "Low-Temperature Specific Heat of Co2NbSn". physica status solidi (b) 176, n. 2 (1 aprile 1993): K45—K46. http://dx.doi.org/10.1002/pssb.2221760228.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
38

Drebushchak, V. A., Yulia A. Kovalevskaya, I. E. Paukov e Elena V. Boldyreva. "Low-temperature heat capacity of diglycylglycine". Journal of Thermal Analysis and Calorimetry 93, n. 3 (settembre 2008): 865–69. http://dx.doi.org/10.1007/s10973-007-8891-0.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
39

Andersson, O., T. Matsuo, H. Suga e P. Ferloni. "Low-temperature heat capacity of urea". International Journal of Thermophysics 14, n. 1 (gennaio 1993): 149–58. http://dx.doi.org/10.1007/bf00522668.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
40

Averfalk, Helge, e Sven Werner. "Novel low temperature heat distribution technology". Energy 145 (febbraio 2018): 526–39. http://dx.doi.org/10.1016/j.energy.2017.12.157.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
41

Briggs, A., O. Thomas, R. Madar e J. P. Senateur. "Low temperature specific heat of CoSi2". Applied Surface Science 53 (novembre 1991): 240–42. http://dx.doi.org/10.1016/0169-4332(91)90270-t.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
42

TAKEDA, Tsunehiro, Takayuki KUNIMATSU e Hiromitsu NOGI. "Ultra-low Temperature Electric Valve with Low Heat Generation". TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan) 52, n. 6 (2017): 465–68. http://dx.doi.org/10.2221/jcsj.52.465.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
43

Brogioli, Doriano, e Fabio La Mantia. "Heat recovery in energy production from low temperature heat sources". AIChE Journal 65, n. 3 (27 dicembre 2018): 980–91. http://dx.doi.org/10.1002/aic.16496.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
44

Yang, Zongming, Volodymyr Korobko, Mykola Radchenko e Roman Radchenko. "Improving Thermoacoustic Low-Temperature Heat Recovery Systems". Sustainability 14, n. 19 (27 settembre 2022): 12306. http://dx.doi.org/10.3390/su141912306.

Testo completo
Abstract (sommario):
The existence and development of modern society require significant amounts of available energy. Combustion engines are the main sources of heat. Their operation is accompanied by the formation of large volumes of emissions, which have different temperatures and contain harmful substances ejected into the environment. Therefore, the urgent problem today is the reduction in heat emissions. This might be achieved through a reduction in the amount of these pollutants by improving primary heat engines, converting to new, alternative types of fuel, and at the same time, to carbon-free fuel. However, such measures only reduce the temperature level of waste heat but not its volume. Conventional technologies for the utilization of heat emissions are ineffective for using heat with temperatures below 500 K. Thermoacoustic technologies can be used to convert such low-temperature heat emissions into mechanical work or electricity. This article is focused on analyzing the possibilities of improving the thermoacoustic engines of energy-saving systems through the rational organization of thermoacoustic energy conversion processes. An original mathematical model of energy exchange between the internal elements of thermoacoustic engines is developed. It is shown that the use of recuperative heat exchangers in thermoacoustic engines leads to a decrease in their efficiency by 10–30%. From the research results, new methods of increasing the efficiency of low-temperature engines of energy-saving systems are proposed.
Gli stili APA, Harvard, Vancouver, ISO e altri
45

bin Ismail, Azhar, Li Ang, Kyaw Thu e Kim Choon Ng. "Low Temperature Waste Heat Driven Refrigeration Cycle". Applied Mechanics and Materials 819 (gennaio 2016): 241–44. http://dx.doi.org/10.4028/www.scientific.net/amm.819.241.

Testo completo
Abstract (sommario):
This work explores the utilization of alternative refrigerants to the conventional silica gel + water adsorption pair for the adsorption chiller cycle. Water as the working fluid in the cycle limits the cooling temperatures to above 0°C due to its triple point. The activated carbon Maxsorb III is thus considered as the adsorbent due to its high micro-porous characteristics which lead to higher uptake values. The isotherms of this adsorbent with natural refrigerant Propane, n-butane as well as refrigerants HFC-134a, R507a and R-32 are fitted to the Dubinin-Astakhov equation and the parameters tabulated. With these isotherms, the performances of these pairs with respect to their Specific Cooling Effects (SCE) are compared for assorted cooling temperature, ambient temperature and waste temperature requirements. It was found that the natural refrigerant propane exhibits the most favorable operational conditions when the required cooling temperature is below 0°C. A mathematical model is thus developed to predict the cycle of the propane cycle and is found to show a good fit to the experimental results.
Gli stili APA, Harvard, Vancouver, ISO e altri
46

Lou, L. F. "Low‐temperature specific heat of (SN)x". Journal of Applied Physics 66, n. 2 (15 luglio 1989): 979–81. http://dx.doi.org/10.1063/1.343479.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
47

Rapp, R. E., M. L. Siqueira, R. J. Viana e L. C. Norte. "A very low‐temperature specific heat calorimeter". Review of Scientific Instruments 63, n. 11 (novembre 1992): 5390–93. http://dx.doi.org/10.1063/1.1143842.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
48

Lin, G. J., J. C. Ho e D. P. Dandekar. "Low‐temperature heat capacities of silicon carbide". Journal of Applied Physics 61, n. 11 (giugno 1987): 5198. http://dx.doi.org/10.1063/1.338302.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
49

Han, Zhiyong, e Zhenzhu Jing. "The Low Temperature Specific Heat of Pr0.65Ca0.35MnO3". Advances in Condensed Matter Physics 2014 (2014): 1–4. http://dx.doi.org/10.1155/2014/394296.

Testo completo
Abstract (sommario):
The low temperature specific heat of polycrystalline perovskite-type Pr0.65Ca0.35MnO3manganese oxide has been investigated experimentally. It is found that the low temperature electron specific heat in zero magnetic field is obviously larger than that of ordinary rare-earth manganites oxide. To get the contribution of phonon to the specific heat precisely, the lattice specific heat is calculated by Debye model fitting. Results confirm that the low temperature specific heat of Pr0.65Ca0.35MnO3is related to the itinerant electrons in ferromagnetic clusters and the disorder in the sample.
Gli stili APA, Harvard, Vancouver, ISO e altri
50

Woodfield, B. F., M. L. Wilson e J. M. Byers. "Low-Temperature Specific Heat ofLa1−xSrxMnO3+δ". Physical Review Letters 78, n. 16 (21 aprile 1997): 3201–4. http://dx.doi.org/10.1103/physrevlett.78.3201.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia