Articoli di riviste sul tema "Low Mach regime"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Low Mach regime".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.
Faccanoni, Gloria, Bérénice Grec e Yohan Penel. "A homogeneous relaxation low mach number model". ESAIM: Mathematical Modelling and Numerical Analysis 55, n. 4 (luglio 2021): 1569–98. http://dx.doi.org/10.1051/m2an/2021032.
Testo completoJardine, M., e E. R. Priest. "Energetics of compressible models of fast steady-state magnetic reconnection". Journal of Plasma Physics 43, n. 1 (febbraio 1990): 141–50. http://dx.doi.org/10.1017/s0022377800014677.
Testo completoJi, Zifei, Huiqiang Zhang e Bing Wang. "Thrust control strategy based on the minimum combustor inlet Mach number to enhance the overall performance of a scramjet engine". Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 233, n. 13 (20 febbraio 2019): 4810–24. http://dx.doi.org/10.1177/0954410019830816.
Testo completoBaus, Franziska, Axel Klar, Nicole Marheineke e Raimund Wegener. "Low-Mach-number and slenderness limit for elastic Cosserat rods and its numerical investigation". Asymptotic Analysis 120, n. 1-2 (6 ottobre 2020): 103–21. http://dx.doi.org/10.3233/asy-191581.
Testo completoShajii, A., e J. P. Freidberg. "Theory of low Mach number compressible flow in a channel". Journal of Fluid Mechanics 313 (25 aprile 1996): 131–45. http://dx.doi.org/10.1017/s0022112096002157.
Testo completoTurner, Stephen E., Lok C. Lam, Mohammad Faghri e Otto J. Gregory. "Experimental Investigation of Gas Flow in Microchannels". Journal of Heat Transfer 126, n. 5 (1 ottobre 2004): 753–63. http://dx.doi.org/10.1115/1.1797036.
Testo completoTomasini, M., N. Dolez e J. Léorat. "Instability of a rotating shear layer in the transonic regime". Journal of Fluid Mechanics 306 (10 gennaio 1996): 59–82. http://dx.doi.org/10.1017/s0022112096001231.
Testo completoBeccantini, A., E. Studer, S. Gounand, J. P. Magnaud, T. Kloczko, C. Corre e S. Kudriakov. "Numerical simulations of a transient injection flow at low Mach number regime". International Journal for Numerical Methods in Engineering 76, n. 5 (29 ottobre 2008): 662–96. http://dx.doi.org/10.1002/nme.2331.
Testo completoPröbsting, S., Y. Yang, H. Zhang, P. Li, Y. Liu e Y. Li. "Effect of Mach number on the aeroacoustic feedback loop generating airfoil tonal noise". Physics of Fluids 34, n. 9 (settembre 2022): 094115. http://dx.doi.org/10.1063/5.0107181.
Testo completoDegond, Pierre, e Min Tang. "All Speed Scheme for the Low Mach Number Limit of the Isentropic Euler Equations". Communications in Computational Physics 10, n. 1 (luglio 2011): 1–31. http://dx.doi.org/10.4208/cicp.210709.210610a.
Testo completoAuddy, Sayantan, Shantanu Basu e Takahiro Kudoh. "The Magnetic Field versus Density Relation in Star-forming Molecular Clouds". Astrophysical Journal Letters 928, n. 1 (1 marzo 2022): L2. http://dx.doi.org/10.3847/2041-8213/ac5a5a.
Testo completoRadhakrishnan P, Ramanan G, Chandan Gowda H R, Meghana C K e Chaithra A N. "Aerodynamic Performance Analysis of a Variable Sweep Wing for Commercial Aircraft Applications". ACS Journal for Science and Engineering 1, n. 1 (12 marzo 2021): 31–37. http://dx.doi.org/10.34293/acsjse.v1i1.5.
Testo completoWang, L., Y. Zhao e S. Fu. "Computational study of drag increase due to wall roughness for hypersonic flight". Aeronautical Journal 121, n. 1237 (marzo 2017): 395–415. http://dx.doi.org/10.1017/aer.2017.9.
Testo completoChalons, Christophe, Mathieu Girardin e Samuel Kokh. "An All-Regime Lagrange-Projection Like Scheme for the Gas Dynamics Equations on Unstructured Meshes". Communications in Computational Physics 20, n. 1 (22 giugno 2016): 188–233. http://dx.doi.org/10.4208/cicp.260614.061115a.
Testo completoMeng, Jianping, Yonghao Zhang, Nicolas G. Hadjiconstantinou, Gregg A. Radtke e Xiaowen Shan. "Lattice ellipsoidal statistical BGK model for thermal non-equilibrium flows". Journal of Fluid Mechanics 718 (8 febbraio 2013): 347–70. http://dx.doi.org/10.1017/jfm.2012.616.
Testo completoGalié, Thomas, Jonathan Jung, Ibtissem Lannabi e Vincent Perrier. "Extension of an all-Mach Roe scheme able to deal with low Mach acoustics to full Euler system". ESAIM: Proceedings and Surveys 76 (2024): 35–51. http://dx.doi.org/10.1051/proc/202476035.
Testo completoWang, Meng, Yi Liu e Kan Wang. "Wall-pressure fluctuations in weakly compressible turbulent channel flow". Journal of the Acoustical Society of America 154, n. 4_supplement (1 ottobre 2023): A282. http://dx.doi.org/10.1121/10.0023529.
Testo completoRubin, T., E. J. Kolmes, I. E. Ochs, M. E. Mlodik e N. J. Fisch. "Fueling limits in a cylindrical viscosity-limited reactor". Physics of Plasmas 29, n. 8 (agosto 2022): 082302. http://dx.doi.org/10.1063/5.0101271.
Testo completoBarsukow, Wasilij, Philipp V. F. Edelmann, Christian Klingenberg, Fabian Miczek e Friedrich K. Röpke. "A Numerical Scheme for the Compressible Low-Mach Number Regime of Ideal Fluid Dynamics". Journal of Scientific Computing 72, n. 2 (31 gennaio 2017): 623–46. http://dx.doi.org/10.1007/s10915-017-0372-4.
Testo completoZou, Ziqiang, Edouard Audit, Nicolas Grenier e Christian Tenaud. "An Accurate Sharp Interface Method for Two-Phase Compressible Flows at Low-Mach Regime". Flow, Turbulence and Combustion 105, n. 4 (31 marzo 2020): 1413–44. http://dx.doi.org/10.1007/s10494-020-00125-1.
Testo completoAlam, Mahbub, e Paul L. Voss. "Graphene quantum interference photodetector". Beilstein Journal of Nanotechnology 6 (12 marzo 2015): 726–35. http://dx.doi.org/10.3762/bjnano.6.74.
Testo completovan Marle, Allard Jan. "On the influence of supra-thermal particle acceleration on the morphology of low-Mach, high-β shocks". Monthly Notices of the Royal Astronomical Society 496, n. 3 (19 giugno 2020): 3198–208. http://dx.doi.org/10.1093/mnras/staa1771.
Testo completoLi, Xiang-Yu, e Lars Mattsson. "Coagulation of inertial particles in supersonic turbulence". Astronomy & Astrophysics 648 (aprile 2021): A52. http://dx.doi.org/10.1051/0004-6361/202040068.
Testo completoEiximeno, Benet, Carlos Tur-Mongé, Oriol Lehmkuhl e Ivette Rodríguez. "Hybrid Computation of the Aerodynamic Noise Radiated by the Wake of a Subsonic Cylinder". Fluids 8, n. 8 (21 agosto 2023): 236. http://dx.doi.org/10.3390/fluids8080236.
Testo completoGat, Ilana, Georgios Matheou, Daniel Chung e Paul E. Dimotakis. "Incompressible variable-density turbulence in an external acceleration field". Journal of Fluid Mechanics 827 (24 agosto 2017): 506–35. http://dx.doi.org/10.1017/jfm.2017.490.
Testo completoHuet, Maxime, e Alexis Giauque. "A nonlinear model for indirect combustion noise through a compact nozzle". Journal of Fluid Mechanics 733 (23 settembre 2013): 268–301. http://dx.doi.org/10.1017/jfm.2013.442.
Testo completoDoshi, Parshwanath S., Rajesh Ranjan e Datta V. Gaitonde. "Global and local modal characteristics of supersonic open cavity flows". Physics of Fluids 34, n. 3 (marzo 2022): 034104. http://dx.doi.org/10.1063/5.0082808.
Testo completoCHANG, KEH-CHIN, e WEN-CHUNG WU. "A STUDY ON FLOW REGIME NEAR CRITICAL RAYLEIGH NUMBER FOR BUOYANCY-DRIVEN CAVITY FLOW". Modern Physics Letters B 19, n. 28n29 (20 dicembre 2005): 1635–38. http://dx.doi.org/10.1142/s0217984905010098.
Testo completoTabrizi, Amir Bashirzadeh, e Binxin Wu. "The role of compressibility in computing noise generated at a cavitating orifice". International Journal of Aeroacoustics 18, n. 1 (27 novembre 2018): 73–91. http://dx.doi.org/10.1177/1475472x18812801.
Testo completoVera, M., H. P. Hodson e R. Vazquez. "The Effects of a Trip Wire and Unsteadiness on a High-Speed Highly Loaded Low-Pressure Turbine Blade". Journal of Turbomachinery 127, n. 4 (1 marzo 2004): 747–54. http://dx.doi.org/10.1115/1.1934446.
Testo completoProença, A. R., O. De almeida e R. H. Self. "AERODYNAMICS AND AEROACOUSTICS SURVEY FOR A LOW SPEED SUBSONIC JET OPERATING AT MACH 0.25". Revista de Engenharia Térmica 13, n. 2 (31 dicembre 2014): 33. http://dx.doi.org/10.5380/reterm.v13i2.62092.
Testo completoGouasmi, Ayoub, Scott M. Murman e Karthik Duraisamy. "Entropy-stable schemes in the low-Mach-number regime: Flux-preconditioning, entropy breakdowns, and entropy transfers". Journal of Computational Physics 456 (maggio 2022): 111036. http://dx.doi.org/10.1016/j.jcp.2022.111036.
Testo completoTahani, Mojtaba, Mohammad Hojaji e Seyed Vahid Mahmoodi Jezeh. "Turbulent jet in crossflow analysis with LES approach". Aircraft Engineering and Aerospace Technology 88, n. 6 (3 ottobre 2016): 717–28. http://dx.doi.org/10.1108/aeat-10-2014-0167.
Testo completoKalita, B. C., e N. Devi. "Kinetic Alfvén solitons in a low-β plasma under the influence of electron drift motion". Journal of Plasma Physics 56, n. 1 (agosto 1996): 35–44. http://dx.doi.org/10.1017/s0022377800019073.
Testo completoDeng, S., B. W. van Oudheusden, T. Xiao e H. Bijl. "A Computational Study on the Aerodynamic Influence of a Propeller on an MAV by Unstructured Overset Grid Technique and Low Mach Number Preconditioning". Open Aerospace Engineering Journal 5, n. 1 (1 novembre 2012): 11–21. http://dx.doi.org/10.2174/1874146001205010011.
Testo completoKhayat, Roger E., e Byung Chan Eu. "Generalized hydrodynamics and linear stability analysis of cylindrical Couette flow of a dilute Lennard–Jones fluid". Canadian Journal of Physics 71, n. 11-12 (1 novembre 1993): 518–36. http://dx.doi.org/10.1139/p93-081.
Testo completoDesjacques, Vincent, Adi Nusser e Robin Bühler. "Analytic Solution to the Dynamical Friction Acting on Circularly Moving Perturbers". Astrophysical Journal 928, n. 1 (1 marzo 2022): 64. http://dx.doi.org/10.3847/1538-4357/ac5519.
Testo completoVilquin, Alexandre, Hamid Kellay e Jean-François Boudet. "Shock waves induced by a planar obstacle in a vibrated granular gas". Journal of Fluid Mechanics 842 (7 marzo 2018): 163–87. http://dx.doi.org/10.1017/jfm.2018.128.
Testo completoDimarco, Giacomo, Raphaël Loubère, Victor Michel-Dansac e Marie-Hélène Vignal. "Second-order implicit-explicit total variation diminishing schemes for the Euler system in the low Mach regime". Journal of Computational Physics 372 (novembre 2018): 178–201. http://dx.doi.org/10.1016/j.jcp.2018.06.022.
Testo completoRieper, Felix, e Georg Bader. "The influence of cell geometry on the accuracy of upwind schemes in the low mach number regime". Journal of Computational Physics 228, n. 8 (maggio 2009): 2918–33. http://dx.doi.org/10.1016/j.jcp.2009.01.002.
Testo completoWu, J. S., S. Y. Chou, U. M. Lee, Y. L. Shao e Y. Y. Lian. "Parallel DSMC Simulation of a Single Under-Expanded Free Orifice Jet From Transition to Near-Continuum Regime". Journal of Fluids Engineering 127, n. 6 (26 giugno 2005): 1161–70. http://dx.doi.org/10.1115/1.2062807.
Testo completoYamouni, Sami, Denis Sipp e Laurent Jacquin. "Interaction between feedback aeroacoustic and acoustic resonance mechanisms in a cavity flow: a global stability analysis". Journal of Fluid Mechanics 717 (1 febbraio 2013): 134–65. http://dx.doi.org/10.1017/jfm.2012.563.
Testo completoGILL, TARSEM SINGH, HARVINDER KAUR e NARESHPAL SINGH SAINI. "Dust-acoustic solitary waves in a finite temperature dusty plasma with variable dust charge and two temperature ions". Journal of Plasma Physics 70, n. 4 (27 luglio 2004): 481–95. http://dx.doi.org/10.1017/s0022377803002733.
Testo completoYan, Chian, Hong Hui Teng, Xiao Cheng Mi e Hoi Dick Ng. "The Effect of Chemical Reactivity on the Formation of Gaseous Oblique Detonation Waves". Aerospace 6, n. 6 (28 maggio 2019): 62. http://dx.doi.org/10.3390/aerospace6060062.
Testo completoCollé, Anthony, Jérôme Limido e Jean-Paul Vila. "An Accurate SPH Scheme for Dynamic Fragmentation modelling". EPJ Web of Conferences 183 (2018): 01030. http://dx.doi.org/10.1051/epjconf/201818301030.
Testo completoFeireisl, Eduard, Mária Lukáčová-Medviďová, Šárka Nečasová, Antonín Novotný e Bangwei She. "Asymptotic Preserving Error Estimates for Numerical Solutions of Compressible Navier--Stokes Equations in the Low Mach Number Regime". Multiscale Modeling & Simulation 16, n. 1 (gennaio 2018): 150–83. http://dx.doi.org/10.1137/16m1094233.
Testo completoMAYER, CHRISTIAN S. J., DOMINIC A. VON TERZI e HERMANN F. FASEL. "Direct numerical simulation of complete transition to turbulence via oblique breakdown at Mach 3". Journal of Fluid Mechanics 674 (13 gennaio 2011): 5–42. http://dx.doi.org/10.1017/s0022112010005094.
Testo completoTheofanous, T. G., G. J. Li e T. N. Dinh. "Aerobreakup in Rarefied Supersonic Gas Flows". Journal of Fluids Engineering 126, n. 4 (1 luglio 2004): 516–27. http://dx.doi.org/10.1115/1.1777234.
Testo completoZou, Ziqiang, Nicolas Grenier, Samuel Kokh, Christian Tenaud e Edouard Audit. "Compressible solver for two-phase flows with sharp interface and capillary effects preserving accuracy in the low Mach regime". Journal of Computational Physics 448 (gennaio 2022): 110735. http://dx.doi.org/10.1016/j.jcp.2021.110735.
Testo completoRieper, Felix. "On the dissipation mechanism of upwind-schemes in the low Mach number regime: A comparison between Roe and HLL". Journal of Computational Physics 229, n. 2 (gennaio 2010): 221–32. http://dx.doi.org/10.1016/j.jcp.2009.09.043.
Testo completo