Letteratura scientifica selezionata sul tema "Local Tate duality"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Local Tate duality".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Local Tate duality"
Newton, Rachel. "Realising the cup product of local Tate duality". Journal de Théorie des Nombres de Bordeaux 27, n. 1 (2015): 219–44. http://dx.doi.org/10.5802/jtnb.900.
Testo completoGazaki, Evangelia. "A finer Tate duality theorem for local Galois symbols". Journal of Algebra 509 (settembre 2018): 337–85. http://dx.doi.org/10.1016/j.jalgebra.2018.05.007.
Testo completoSUZUKI, TAKASHI. "DUALITY FOR COHOMOLOGY OF CURVES WITH COEFFICIENTS IN ABELIAN VARIETIES". Nagoya Mathematical Journal 240 (19 dicembre 2018): 42–149. http://dx.doi.org/10.1017/nmj.2018.46.
Testo completoArtusa, Marco. "Duality for condensed cohomology of the Weil group of a $p$-adic field". Documenta Mathematica 29, n. 6 (26 novembre 2024): 1381–434. http://dx.doi.org/10.4171/dm/977.
Testo completoGazaki, Evangelia. "A Tate duality theorem for local Galois symbols II; The semi-abelian case". Journal of Number Theory 204 (novembre 2019): 532–60. http://dx.doi.org/10.1016/j.jnt.2019.04.017.
Testo completoHerr, Laurent. "Une approche nouvelle de la dualité locale de Tate". Mathematische Annalen 320, n. 2 (giugno 2001): 307–37. http://dx.doi.org/10.1007/pl00004476.
Testo completoRehman, Rashad. "Disintegrating Particles, Non-Local Causation and Category Mistakes: What do Conservation Laws have to do with Dualism?" Conatus 2, n. 2 (16 marzo 2018): 63. http://dx.doi.org/10.12681/conatus.15963.
Testo completoGiblin, Peter, e Farid Tari. "Perpendicular bisectors, duality and local symmetry of plane curves". Proceedings of the Royal Society of Edinburgh: Section A Mathematics 125, n. 1 (1995): 181–94. http://dx.doi.org/10.1017/s0308210500030821.
Testo completoJennane, Mohsine, El Mostafa Kalmoun, Lahoussine Lafhim e Anouar Houmia. "Quasi Efficient Solutions and Duality Results in a Multiobjective Optimization Problem with Mixed Constraints via Tangential Subdifferentials". Mathematics 10, n. 22 (18 novembre 2022): 4341. http://dx.doi.org/10.3390/math10224341.
Testo completoISIDRO, JOSÉ M. "DUALITY AND THE EQUIVALENCE PRINCIPLE OF QUANTUM MECHANICS". International Journal of Modern Physics A 16, n. 23 (20 settembre 2001): 3853–65. http://dx.doi.org/10.1142/s0217751x01005353.
Testo completoTesi sul tema "Local Tate duality"
Artusa, Marco. "Sur des théorèmes de dualité pour la cohomologie condensée du groupe de Weil d'un corps p-adique". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0228.
Testo completoThe goal of this thesis is twofold. First, we build a topological cohomology theory for the Weil group of p-adic fields. Secondly, we use this theory to prove duality theorems for such fields, which manifest as Pontryagin duality between locally compact abelian groups. These results improve existing duality theorems and give them a topological flavour. Condensed Mathematics allow us to reach these objectives, providing a framework where it is possible to do algebra with topological objects. We define and study a cohomology theory for condensed groups and pro-condensed groups, and we apply it to the Weil group of a p-adic field, considered as a pro-condensed group. The resulting cohomology groups are proved to be locally compact abelian groups of finite ranks in some special cases. This allows us to enlarge the local Tate duality to a more general category of non-necessarily discrete coefficients, where it takes the form of a Pontryagin duality between locally compact abelian groups. In the last part of the thesis, we use the same framework to recover a Weil-version of the Tate duality with coefficients in abelian varieties and more generally in 1-motives, expressing those dualities as perfect pairings between condensed abelian groups. To do this, we associate to every algebraic group, resp. 1-motive, a condensed abelian group, resp. a complex of condensed abelian groups, with an action of the (pro-condensed) Weil group. We call this association the condensed Weil-´etale realisation. We show the existence of a condensed Poincar´e pairing for abelian varieties and we prove a condensed-Weil version of the Tate duality with coefficients in abelian varieties, which improves the correspondent result of Karpuk. Lastly, we exhibit a condensed Poincar´e pairing for 1-motives. We show that this pairing is compatible with the weight filtration and we prove a duality theorem with coefficients in 1-motives, which improves a result of Harari-Szamuely
Nguyen, Manh-Linh. "Cohomological studies of rational points over fields of arithmetico-geometric nature". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM010.
Testo completoIn this thesis, we study various arithmetic problems, notably the existence of rational points and weak approximation on certain varieties over number fields and their geometric analogues.After the first introductory chapter, we present in the second one some results obtained by computations with (abelian or nonabelian) Galois cocycles. First, we consider a formula of Borovoi-Demarche-Harari for the unramified algebraic Brauer group of homogeneous spaces. Then, we establish the Hasse principle and weak approximation for a class of homogeneous spaces of SLn over number fields, whose geometric stabilizers are finite of nilpotency class 2, constructed by Borovoi and Kunyavskii. This is a small step towards a conjecture of Colliot-Thélène on the Brauer-Manin obstruction for rationally connected varieties.The third chapter is devoted to a recently formulated conjecture by Wittenberg, which concerns descent theory (a method orginially developped by Colliot-Thélène and Sansuc). We prove this conjecture for torsors under a connected linear algebraic group, generalizing a previous result of Harpaz and Wittenberg for torsors under a torus. We do this by adapting their technique with Borovoi's machinery of abelianization of non-abelian Galois cohomology. We shall also prove a version of this “descent conjecture” in the context of zero-cycles.In this last chapter, we follow the works of Harari-Scheiderer-Szamuely, Izquierdo and Tian, by studying the local-global principle and weak approximation over p-adic function fields. Over these fields, which are fields of cohomological dimension 3, there exists a higher-dimensional analogue of the Brauer-Manin obstruction that relies on the generalized Weil reciprocity law. Here, we apply Poitou-Tate style duality theorems to obtain some results for certain homogeneous spaces. We also consider some function fields of cohomological dimension greater than 3
Capitoli di libri sul tema "Local Tate duality"
Harari, David. "The Tate Local Duality Theorem". In Galois Cohomology and Class Field Theory, 131–43. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43901-9_10.
Testo completo"CHAPITRE 10 DUALITÉ LOCALE DE TATE". In Cohomologie galoisienne, 143–56. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2067-2-012.
Testo completo"CHAPITRE 10 DUALITÉ LOCALE DE TATE". In Cohomologie galoisienne, 143–56. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2067-2.c012.
Testo completoAtti di convegni sul tema "Local Tate duality"
Erdélyi, Dániel. "Climate change among the least developed". In The Challenges of Analyzing Social and Economic Processes in the 21st Century. Szeged: Szegedi Tudományegyetem Gazdaságtudományi Kar, 2020. http://dx.doi.org/10.14232/casep21c.12.
Testo completoأبو الحسن اسماعيل, علاء. "Assessing the Political Ideology in the Excerpts Cited from the Speeches and Resolutions of the Former Regime After the Acts of Genocide". In Peacebuilding and Genocide Prevention. University of Human Development, 2021. http://dx.doi.org/10.21928/uhdicpgp/2.
Testo completo