Letteratura scientifica selezionata sul tema "Liposomes"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Liposomes".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Liposomes"
Al Badri, Yaqeen Nadheer, Cheng Shu Chaw e Amal Ali Elkordy. "Insights into Asymmetric Liposomes as a Potential Intervention for Drug Delivery Including Pulmonary Nanotherapeutics". Pharmaceutics 15, n. 1 (15 gennaio 2023): 294. http://dx.doi.org/10.3390/pharmaceutics15010294.
Testo completoIshida, Tatsuhiro, Hideyoshi Harashima e Hiroshi Kiwada. "Liposome Clearance". Bioscience Reports 22, n. 2 (1 aprile 2002): 197–224. http://dx.doi.org/10.1023/a:1020134521778.
Testo completoCattel, Luigi, Maurizio Ceruti e Franco Dosio. "From Conventional to Stealth Liposomes a new Frontier in Cancer Chemotherapy". Tumori Journal 89, n. 3 (maggio 2003): 237–49. http://dx.doi.org/10.1177/030089160308900302.
Testo completoYanagihara, Shin, Yukiya Kitayama, Eiji Yuba e Atsushi Harada. "Preparing Size-Controlled Liposomes Modified with Polysaccharide Derivatives for pH-Responsive Drug Delivery Applications". Life 13, n. 11 (3 novembre 2023): 2158. http://dx.doi.org/10.3390/life13112158.
Testo completoKumar, Amit, Madhu Gupta e Simran Braya. "Liposome Characterization, Applications and Regulatory landscape in US". International Journal of Drug Regulatory Affairs 9, n. 2 (22 giugno 2021): 81–89. http://dx.doi.org/10.22270/ijdra.v9i2.474.
Testo completoGoins, Beth A., e William T. Phillips. "The Use of Scintigraphic Imaging During Liposome Drug Development". Journal of Pharmacy Practice 14, n. 5 (ottobre 2001): 397–406. http://dx.doi.org/10.1106/da2m-fyju-1xxq-ppkk.
Testo completoMarqués-Gallego, Patricia, e Anton I. P. M. de Kroon. "Ligation Strategies for Targeting Liposomal Nanocarriers". BioMed Research International 2014 (2014): 1–12. http://dx.doi.org/10.1155/2014/129458.
Testo completoAl Mutairi, Amal Abdullah, e Mohsen Mahmoud Mady. "Biophysical Characterization of (DOX-NPtm): FTIR and DSC Studies". JOURNAL OF ADVANCES IN PHYSICS 20 (3 marzo 2022): 41–47. http://dx.doi.org/10.24297/jap.v20i.9194.
Testo completoAbbase, Eman R., Medhat W. Shafaa e Mohsen M. Mady. "Competition Between Heparin and Polyethylene Glycol as Biofunctionalization for Improving Stability of Liposomal Doxorubicin". Advanced Science, Engineering and Medicine 12, n. 2 (1 febbraio 2020): 271–77. http://dx.doi.org/10.1166/asem.2020.2496.
Testo completoHeneweer, Carola, Tuula Peñate Medina, Robert Tower, Holger Kalthoff, Richard Kolesnick, Steven Larson e Oula Peñate Medina. "Acid-Sphingomyelinase Triggered Fluorescently Labeled Sphingomyelin Containing Liposomes in Tumor Diagnosis after Radiation-Induced Stress". International Journal of Molecular Sciences 22, n. 8 (8 aprile 2021): 3864. http://dx.doi.org/10.3390/ijms22083864.
Testo completoTesi sul tema "Liposomes"
Heeremans, Anneke. "Liposomes in thrombolytic therapy : t-PA targeting with plasminogen-liposomes, a novel concept = Liposomen voor thrombolytische therapie /". [S.l. : s.n.], 1995. http://www.gbv.de/dms/bs/toc/186694245.pdf.
Testo completoThibault, Benoit. "Les liposomes : méthodes de préparation". Paris 5, 1990. http://www.theses.fr/1990PA05P177.
Testo completoLoughrey, Helen. "Targeted liposomes". Thesis, University of British Columbia, 1989. http://hdl.handle.net/2429/29180.
Testo completoMedicine, Faculty of
Biochemistry and Molecular Biology, Department of
Graduate
Mougin-Degraef, Marie Faivre-Chauvet Alain. "Les liposomes". [S.l.] : [s.n.], 2004. http://theses.univ-nantes.fr/thesemed/PHmougin.pdf.
Testo completoGyanani, Vijay. "Turning stealth liposomes into cationic liposomes for anticancer drug delivery". Scholarly Commons, 2013. https://scholarlycommons.pacific.edu/uop_etds/147.
Testo completoChen, Xiaoyu. "Investigation of liposomes and liposomal gel for prolonging the therapeutic effects of pharmaceutical ingredients". HKBU Institutional Repository, 2013. http://repository.hkbu.edu.hk/etd_ra/1524.
Testo completoRodríguez, Fernández Silvia. "Phosphatidylserine-rich liposomes to tackle autoimmunity. En route to translationality". Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/667944.
Testo completoAutoimmune diseases are caused by defective immunological tolerance, and reportedly affect up to 10% of the global population. In the last years, current medical interventions have transformed these disorders into chronic and manageable, but they still entail high rates of morbidity and mortality. Hence, there is an urgent need to develop therapies capable of restoring the breach of tolerance selectively, which halt the autoimmune aggression and allow the regeneration of the targeted tissue. In physiological conditions, the phagocytosis of apoptotic cells performed by phagocytes such as dendritic cells (DCs) —a process termed efferocytosis— prompts the acquisition of tolerogenic features and the ability to restore tolerance. Indeed, a cell immunotherapy consisting of DCs rendered tolerogenic (tolDCs) by apoptotic β-cell efferocytosis arrested the autoimmune attack against β-cells in an experimental model of type 1 diabetes (T1D). However, in light of the hurdles in obtaining and standardising human autologous apoptotic β-cells for its implementation in the clinics, a nanotherapeutic strategy based on liposomes mimicking apoptotic cells was designed. The fundamental characteristics of these synthetic vesicles are: a high percentage of phosphatidylserine (PS) —phospholipid unique to the apoptotic cell membrane—, diameter superior to 500 nm, negative charge and efficient encapsulation of insulin peptides. Importantly, this strategy was equally effective in inducing tolDCs and blunting β-cell autoimmunity as the immunotherapy based on apoptotic cells. The hypothesis of this work is that autoantigen-loaded PS-liposomes can re-establish tolerance in several antigen-specific autoimmune diseases through the induction of tolDCs and the expansion of regulatory T lymphocytes, and that they have translational potential to tackle human autoimmune disorders. The main aim of the present work has been to characterise the tolerogenic potential of PS-liposomes globally. To this end, different autoantigenic peptides relevant in autoimmune diseases have been efficiently encapsulated into PS-liposomes, without difficulties in preserving their appropriate diameter and charge, thus demonstrating the versatility of the therapy to different autoimmune pathologies. In the experimental model of T1D, the administration of PS-liposomes causes the expansion of clonal CD4+ regulatory T cells and CD8+ T cells, which contribute to the long-term re-establishment of tolerance. Moreover, in the same model, the biocompatibility and safety of the final product have been confirmed given its optimal tolerability. Furthermore, PS-liposomes have been adapted to the experimental multiple sclerosis model by merely replacing the encapsulated autoantigen. In this model, PS-liposomes elicit the generation of tolDCs and decrease the incidence and severity of the disease correlating with an increase in the frequency of regulatory T cells, a fact that validates the potential of PS-liposomes to serve as a platform for tolerance re-establishment in different autoimmune diseases. Finally, considering its future clinical implementation, the effect of the PS-liposomes therapy has been determined in human DCs obtained from patients with T1D. In DCs from adult patients, PS-liposomes are efficiently phagocyted by DCs with rapid kinetics dependent on the presence of PS, and this induces a tolerogenic transcriptome, phenotype and functionality that are similar to those observed in experimental models. However, DCs from paediatric patients display defects in their phagocytic capacity correlating with the time of disease progression, albeit their phenotype and immunoregulatory gene expression after PS-liposomes phagocytosis point to an optimal tolerogenic ability. In conclusion, the liposomal immunotherapy herein described, which is based on efferocytosis as a powerful tolerance-inducing mechanism, achieves apoptotic mimicry in a simple, safe and efficient manner. Additionally, liposomes offer advantages in terms of production and standardisation. Therefore, PS-liposomes possess translational potential and constitute an encouraging strategy to restore immunological tolerance in antigen-specific autoimmune diseases.
Bohl, Kullberg Erika. "Tumor Cell Targeting of Stabilized Liposome Conjugates : Experimental studies using boronated DNA-binding agents". Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-3435.
Testo completoWhite, Karen Louise, e n/a. "Modified liposomes as adjuvants". University of Otago. School of Pharmacy, 2005. http://adt.otago.ac.nz./public/adt-NZDU20070126.131417.
Testo completoFrost, S. J. "Analytical applications of liposomes". Thesis, University of Surrey, 1994. http://epubs.surrey.ac.uk/2745/.
Testo completoLibri sul tema "Liposomes"
Nejat Du zgu nes ʹ. Liposomes. San Diego: Elsevier Academic Press, 2009.
Cerca il testo completoʹ, Nejat Du zgu nes. Liposomes. Amsterdam: Elsevier, 2009.
Cerca il testo completoD'Souza, Gerard G. M., a cura di. Liposomes. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6591-5.
Testo completoWeissig, Volkmar, a cura di. Liposomes. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-447-0.
Testo completoWeissig, Volkmar, a cura di. Liposomes. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60327-360-2.
Testo completoD'Souza, Gerard G. M., e Hongwei Zhang, a cura di. Liposomes. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-2954-3.
Testo completoNejat, Düzgünes, a cura di. Liposomes. San Diego, Calif: Academic Press, 2003.
Cerca il testo completoOstro, Marc J. Liposomes. New York: Scientific American, 1987.
Cerca il testo completoNejat, Düzgüneş, a cura di. Liposomes. San Diego, CA: Elsevier Academic Press, 2005.
Cerca il testo completoNejat, Düzgüneş, a cura di. Liposomes. Amsterdam: Elsevier Academic Press, 2003.
Cerca il testo completoCapitoli di libri sul tema "Liposomes"
Moghimi, Seyed Moein. "Liposomes". In Encyclopedia of Nanotechnology, 1802–8. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-9780-1_95.
Testo completoTadros, Tharwat. "Liposomes". In Encyclopedia of Colloid and Interface Science, 682. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-20665-8_114.
Testo completoVergara-Irigaray, Nuria, Michèle Riesen, Gianluca Piazza, Lawrence F. Bronk, Wouter H. P. Driessen, Julianna K. Edwards, Wadih Arap et al. "Liposomes". In Encyclopedia of Nanotechnology, 1218–23. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_95.
Testo completoOku, Naoto. "Liposomes". In ACS Symposium Series, 24–33. Washington, DC: American Chemical Society, 1991. http://dx.doi.org/10.1021/bk-1991-0469.ch003.
Testo completoKalra, Jessica, e Marcel B. Bally. "Liposomes". In Fundamentals of Pharmaceutical Nanoscience, 27–63. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-9164-4_3.
Testo completoStanzl, Klaus. "Liposomes". In Novel Cosmetic Delivery Systems, 233–66. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003418078-12.
Testo completoSantana, Maria Helena A., e Beatriz Zanchetta. "Elastic Liposomes". In Nanocosmetics and Nanomedicines, 139–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19792-5_7.
Testo completoAryasomayajula, Bhawani, Giuseppina Salzano e Vladimir P. Torchilin. "Multifunctional Liposomes". In Methods in Molecular Biology, 41–61. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6646-2_3.
Testo completoStano, Pasquale, e Pier Luigi Luisi. "Reactions in Liposomes". In Molecular Encapsulation, 455–91. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470664872.ch17.
Testo completoOzcetin, Aybike, Samet Mutlu e Udo Bakowsky. "Archaebacterial Tetraetherlipid Liposomes". In Methods in Molecular Biology, 87–96. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60327-360-2_5.
Testo completoAtti di convegni sul tema "Liposomes"
Zeimer, Ran C., Bahram Khoobehi, Gholam A. Peyman, Richard L. Magin e Michael R. Niesman. "Externally Controlled Delivery of Dyes in the Eye: A Potential New Method to Assess Retinal Blood Circulation". In Noninvasive Assessment of the Visual System. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/navs.1988.thb1.
Testo completoLee, Eunice S., Christel M. Munoz, Blake A. Simmons, C. R. Bowe Ellis e Rafael V. Davalos. "Feasibility Study on the Use of Temperature-Dependent Liposomes for Variable Concentration Profiles in Drug Delivery Applications". In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61303.
Testo completoZhang, Aili, Xipeng Mi e Lisa X. Xu. "Study of Thermally Targeted Nano-Particle Drug Delivery for Tumor Therapy". In ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer. ASMEDC, 2008. http://dx.doi.org/10.1115/mnht2008-52383.
Testo completoMatsuyama, R., K. Nobusue, N. Arai, T. Honda, M. Komiya, A. Hirano-Iwata e M. Sadgrove. "Localization of lipid vesicles near a thin optical fiber". In Optical Manipulation and Its Applications. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/oma.2023.ath1d.3.
Testo completoTartis, Michaelann S., Jan Marik, Azadeh Kheirolomoom, Rachel E. Pollard, Hua Zhang, Jinyi Qi, Julie L. Sutcliffe e Katherine W. Ferrara. "Pharmacokinetics of Encapsulated Paclitaxel: Multi-Probe Analysis With PET". In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176435.
Testo completoPopova, O. S. "Nanoparticles as a transport system for corvacrol compounds". In SPbVetScience. FSBEI HE St. Petersburg SUVM, 2023. http://dx.doi.org/10.52419/3006-2023-8-64-67.
Testo completoLarsen, Jannik. "Single liposome fluorescent imaging reveal heterogeneous pegylation of drug delivery liposomes". In European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.1008.
Testo completoZhang, Shu, Lachlan Gibson, Daryl Preece, Timo A. Nieminen e Halina Rubinsztein-Dunlop. "Viscoelasticity measurements inside liposomes". In SPIE NanoScience + Engineering, a cura di Kishan Dholakia e Gabriel C. Spalding. SPIE, 2014. http://dx.doi.org/10.1117/12.2060938.
Testo completoNoguchi, Akemi, Chiaki Kojima, Ken-ichi Yuyama, Tatsuya Shoji e Yasuyuki Tsuboi. "Laser-induced microbubble fusion of liposomes and formation of ultralong tubes". In Conference on Lasers and Electro-Optics/Pacific Rim. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleopr.2022.ctup16e_05.
Testo completoEnzian, Paula, Astrid Link, Christian Schell, Carina Malich e Ramtin Rahmanzadeh. "Light-induced permeabilization of liposomes". In 17th International Photodynamic Association World Congress, a cura di Tayyaba Hasan. SPIE, 2019. http://dx.doi.org/10.1117/12.2526071.
Testo completoRapporti di organizzazioni sul tema "Liposomes"
Joyce, Christine, e Deidre Mountain. Optimization of Liposomal Encapsulation Efficiency. University of Tennessee Health Science Center, 2021. http://dx.doi.org/10.21007/com.lsp.2018.0002.
Testo completoCheng, Yung-Sung, C. R. Lyons e M. H. Schmid. Delivery of aerosolized drugs encapsulated in liposomes. Office of Scientific and Technical Information (OSTI), dicembre 1995. http://dx.doi.org/10.2172/381350.
Testo completoVanderMeulen, David L., Prabhakar Misra, Jason Michael, Kenneth G. Spears e Mustafa Khoka. Laser Mediated Release of Dye form Liposomes,. Fort Belvoir, VA: Defense Technical Information Center, gennaio 1992. http://dx.doi.org/10.21236/ada249203.
Testo completoAuthor, Not Given. DNA Repair Enzyme-Liposomes: Human Skin Cancer Prevention. Office of Scientific and Technical Information (OSTI), settembre 1999. http://dx.doi.org/10.2172/770453.
Testo completoSanthosh, Poornima, Julia Genova, Ales Iglič, Veronika Kralj-Iglič e Nataša Poklar Ulrih. Influence of Cholesterol on Bilayer Fluidity and Size Distribution of Liposomes. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, luglio 2020. http://dx.doi.org/10.7546/crabs.2020.07.07.
Testo completoZakrevskiy, V. I., N. G. Plekhanova e V. I. Smirnova. Entrapping of Hydrophobized Plague Capsular Antigen into the Large Unilamellar Liposomes. Fort Belvoir, VA: Defense Technical Information Center, gennaio 1991. http://dx.doi.org/10.21236/ada241775.
Testo completoAlving, Carl R. Lipid A and Liposomes Containing Lipid A as Adjuvants for Vaccines. Chapter 18. Fort Belvoir, VA: Defense Technical Information Center, gennaio 1993. http://dx.doi.org/10.21236/ada272664.
Testo completoOnyuksel, Hayat. Tc-99m Labeled and VIP Receptor Targeted Liposomes for Effective Imaging of Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, settembre 2004. http://dx.doi.org/10.21236/ada433960.
Testo completoZakrevskiy, V. I., e N. G. Plekhanova. Study of Protective Properties of Antigen-Containing Liposomes of Varying Lipid Composition in Plague. Fort Belvoir, VA: Defense Technical Information Center, gennaio 1991. http://dx.doi.org/10.21236/ada241778.
Testo completoTaylor, Kenneth M. The Effect of Cholesterol on the Binding and Insertion of Cytochrome b5 into Liposomes of Phosphatidylcholines. Fort Belvoir, VA: Defense Technical Information Center, agosto 1993. http://dx.doi.org/10.21236/ad1011298.
Testo completo