Articoli di riviste sul tema "Linear induction accelerators"

Segui questo link per vedere altri tipi di pubblicazioni sul tema: Linear induction accelerators.

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Linear induction accelerators".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.

1

Bayless, John R., Craig P. Burkhart e Richard J. Adler. "Linear induction accelerators for industrial applications". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 40-41 (aprile 1989): 1142–45. http://dx.doi.org/10.1016/0168-583x(89)90558-2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Wang, Shao-Heng, e Jian-Jun Deng. "Acceleration modules in linear induction accelerators". Chinese Physics C 38, n. 5 (maggio 2014): 057005. http://dx.doi.org/10.1088/1674-1137/38/5/057005.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Bayless, John R., e Richard J. Adler. "Linear induction accelerators for radiation processing". International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry 31, n. 1-3 (gennaio 1988): 327–31. http://dx.doi.org/10.1016/1359-0197(88)90146-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Matsuzawa, Hidenori, Haruhisa Wada, Satoshi Mori e Tadashi Yamamoto. "Induction Linear Accelerators with High-TcBulk Superconductor Lenses". Japanese Journal of Applied Physics 30, Part 1, No. 11A (15 novembre 1991): 2972–73. http://dx.doi.org/10.1143/jjap.30.2972.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Humphries, Stanley. "Quadrupole field geometries for intense electron beam acceleration". Laser and Particle Beams 14, n. 3 (settembre 1996): 519–28. http://dx.doi.org/10.1017/s0263034600010193.

Testo completo
Abstract (sommario):
High-intensity electron beams could be focused in low-frequency RF accelerators and induction linear accelerators by adding transverse components to the accelerating electric field. Calculations with a 3D code show that quasielectrostatic focusing is sufficient to transport kiloampere electron beams in RF accelerators and the high-energy sections of induction accelerators. The elimination of conventional magnetic focusing systems could lead to reductions in the volume and weight of high-current electron accelerators. Two novel quadrupole geometries are investigated: a periodic array of spherical electrodes with alternating displacements and a set of plate electrodes with elliptical apertures.
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Herrmannsfeldt, W. B., e Denis Keefe. "Induction linac drivers for heavy ion fusion". Laser and Particle Beams 8, n. 1-2 (gennaio 1990): 81–88. http://dx.doi.org/10.1017/s0263034600007849.

Testo completo
Abstract (sommario):
The Heavy Ion Fusion Accelerator Research (HIFAR) program of the U.S. Dept. of Energy has for several years concentrated on developing linear induction accelerators as Inertial Fusion (IF) drivers. This accelerator technology is suitable for the IF application because it is readily capable of accelerating short, intense pulses of charged particles with good electrical efficiency. The principal technical difficulty is in injecting and transporting the intense pulses while maintaining the necessary beam quality. The approach used has been to design a system of multiple beams so that not all of the charge has to be confined in a single beam line. The beams are finally brought together in a common focus at the target. This paper will briefly present the status and future plans of the program, and will also briefly review systems study results for HIF.
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Ekdahl, Carl. "The Resistive-Wall Instability in Multipulse Linear Induction Accelerators". IEEE Transactions on Plasma Science 45, n. 5 (maggio 2017): 811–18. http://dx.doi.org/10.1109/tps.2017.2681040.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Orzechowski, T., E. Scharlemann, B. Anderson, V. Neil, W. Fawley, D. Prosnitz, S. Yarema et al. "High-gain free electron lasers using induction linear accelerators". IEEE Journal of Quantum Electronics 21, n. 7 (luglio 1985): 831–44. http://dx.doi.org/10.1109/jqe.1985.1072732.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Humphries, Stanley. "Simulations of longitudinal instabilities in ion induction linear accelerators". Laser and Particle Beams 10, n. 3 (settembre 1992): 511–29. http://dx.doi.org/10.1017/s0263034600006765.

Testo completo
Abstract (sommario):
This article describes computer simulations of a longitudinal instability that affects induction linear accelerators for high-power ion beams. The instability is driven by axial bunching of ions when they interact with acceleration gaps connected to input transmission lines. The process is similar to the longitudinal resistive wall instability in continuous systems. Although bunching instabilities do not appear in existing induction linear accelerators for electrons, they may be important for proposed ion accelerators for heavy ion fusion. The simulation code is a particle-in-cell model that describes a drifting beam crossing discrete acceleration gaps with a self-consistent calculation of axial space charge forces. In present studies with periodic boundaries, the model predicts values for quantities such as the stabilizing axial velocity spread that are in good agreement with analytic theories. The simulations describe the nonlinear growth of the instability and its saturation with increased axial emittance. They show that an initially cold beam is subject to a severe disruption that drives the emittance well above the stabilized saturation levels. The simulation results confirm that axial space charge forces do not reduce axial beam bunching. In fact, space charge effects increase the axial velocity spread required for stability. With simple resistive driving circuits, the model predicts velocity spreads that are too high for heavy ion fusion applications. Several processes currently under study may mitigate this result, including advanced pulsed power switching methods, enhanced gap capacitance, and an energy spread impressed between individual beams of a multibeam transport system.
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Lagunas-Solar, Manuel C. "Induction-linear accelerators for food processing with ionizing radiation". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 10-11 (maggio 1985): 987–93. http://dx.doi.org/10.1016/0168-583x(85)90155-7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
11

Peskov, N. Yu, N. S. Ginzburg, A. K. Kaminsky, S. N. Sedykh e A. S. Sergeev. "High-Power Free-Electron Masers Based on Linear Induction Accelerators". Radiophysics and Quantum Electronics 63, n. 12 (maggio 2021): 931–75. http://dx.doi.org/10.1007/s11141-021-10105-8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
12

Peskov, N. Yu, N. S. Ginzburg, A. K. Kaminsky, S. N. Sedykh e A. S. Sergeev. "High-Power Free-Electron Masers Based on Linear Induction Accelerators". Izvestiya vysshikh uchebnykh zavedenii. Radiofizika 63, n. 12 (2020): 1032–81. http://dx.doi.org/10.52452/00213462_2020_63_12_1032.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
13

Zhang, H., K. Zhang, Y. Shen, X. Jiang, P. Dong, Y. Liu, Y. Wang et al. "Note: A pulsed laser ion source for linear induction accelerators". Review of Scientific Instruments 86, n. 1 (gennaio 2015): 016104. http://dx.doi.org/10.1063/1.4905363.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
14

Peach, Ken, e Carl Ekdahl. "Particle Beam Radiography". Reviews of Accelerator Science and Technology 06 (gennaio 2013): 117–42. http://dx.doi.org/10.1142/s1793626813300065.

Testo completo
Abstract (sommario):
Particle beam radiography, which uses a variety of particle probes (neutrons, protons, electrons, gammas and potentially other particles) to study the structure of materials and objects noninvasively, is reviewed, largely from an accelerator perspective, although the use of cosmic rays (mainly muons but potentially also high-energy neutrinos) is briefly reviewed. Tomography is a form of radiography which uses multiple views to reconstruct a three-dimensional density map of an object. There is a very wide range of applications of radiography and tomography, from medicine to engineering and security, and advances in instrumentation, specifically the development of electronic detectors, allow rapid analysis of the resultant radiographs. Flash radiography is a diagnostic technique for large high-explosive-driven hydrodynamic experiments that is used at many laboratories. The bremsstrahlung radiation pulse from an intense relativistic electron beam incident onto a high-Z target is the source of these radiographs. The challenge is to provide radiation sources intense enough to penetrate hundreds of g/cm2 of material, in pulses short enough to stop the motion of high-speed hydrodynamic shocks, and with source spots small enough to resolve fine details. The challenge has been met with a wide variety of accelerator technologies, including pulsed-power-driven diodes, air-core pulsed betatrons and high-current linear induction accelerators. Accelerator technology has also evolved to accommodate the experimenters' continuing quest for multiple images in time and space. Linear induction accelerators have had a major role in these advances, especially in providing multiple-time radiographs of the largest hydrodynamic experiments.
Gli stili APA, Harvard, Vancouver, ISO e altri
15

Ekdahl, Carl, e Rodney McCrady. "Suppression of Beam Breakup in Linear Induction Accelerators by Stagger Tuning". IEEE Transactions on Plasma Science 48, n. 10 (ottobre 2020): 3589–99. http://dx.doi.org/10.1109/tps.2020.3019999.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
16

Hovingh, Jack, Victor O. Brady, Andris Faltens, Denis Keefe e Edward P. Lee. "Heavy-Ion Linear Induction Accelerators as Drivers for Inertial Fusion Power Plants". Fusion Technology 13, n. 2 (febbraio 1988): 255–78. http://dx.doi.org/10.13182/fst88-a25104.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
17

Rosenthal, S. E. "Characterization of electron flow in negative- and positive-polarity linear-induction accelerators". IEEE Transactions on Plasma Science 19, n. 5 (1991): 822–30. http://dx.doi.org/10.1109/27.108419.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
18

Hotta, Eiki, e Izumi Hayashi. "Bidirectional pulser for linear induction accelerators made from line cavities with external pulse injection." Kakuyūgō kenkyū 56, n. 1 (1986): 52–58. http://dx.doi.org/10.1585/jspf1958.56.52.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
19

Burris-Mog, T. J., M. A. Chavez, M. A. Espy, M. J. Manard, D. C. Moir, J. B. Schillig, R. Trainham e P. L. Volegov. "Calibration of two compact permanent magnet spectrometers for high current electron linear induction accelerators". Review of Scientific Instruments 89, n. 7 (luglio 2018): 073303. http://dx.doi.org/10.1063/1.5029837.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
20

Miller, R. B., B. M. Marder, P. D. Coleman e R. E. Clark. "The effect of accelerating gap geometry on the beam breakup instability in linear induction accelerators". Journal of Applied Physics 63, n. 4 (15 febbraio 1988): 997–1008. http://dx.doi.org/10.1063/1.341136.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Bolyukh, V. F., e I. S. Shchukin. "Influence of limiting the duration of the armature winding current on the operating indicators of a linear pulse electromechanical induction type converter". Electrical Engineering & Electromechanics, n. 6 (3 dicembre 2021): 3–10. http://dx.doi.org/10.20998/2074-272x.2021.6.01.

Testo completo
Abstract (sommario):
Introduction. Linear pulse electromechanical converters of induction type (LPECIT) are used in many branches of science and technology as shock-power devices and electromechanical accelerators. In them, due to the phase shift between the excitation current in the inductor winding and the induced current in the armature winding, in addition to the initial electrodynamic forces (EDF) of repulsion, subsequent EDF of attraction also arise. As a result, the operating indicators of LPECIT are reduced. The purpose of the article is to increase the performance of linear pulse electromechanical induction-type converters when operating as a shock-power device and an electromechanical accelerator by limiting the duration of the induced current in the armature winding until its polarity changes. Methodology. To analyze the electromechanical characteristics and indicators of LPECIT, a mathematical model was used, in which the solutions of equations describing interrelated electrical, magnetic, mechanical and thermal processes are presented in a recurrent form. Results. To eliminate the EDF of attraction between the LPIECIT windings, it is proposed to limit the duration of the induced current in the armature winding before changing its polarity by connecting a rectifier diode to it. It was found that when the converter operates as a shock-power device without limiting the armature winding current, the value of the EDF pulse after reaching the maximum value decreases by the end of the operating cycle. In the presence of a diode in the armature winding, the efficiency criterion, taking into account the EDF pulse, recoil force, current and heating temperature of the inductor winding, increases. When the converter operates as an electromechanical accelerator without limiting the armature winding current, the speed and efficiency decrease, taking into account the kinetic energy and voltage of the capacitive energy storage at the end of the operating cycle. In the presence of a diode in the armature winding, the efficiency criterion increases, the temperature rise of the armature winding decreases, the value of the maximum efficiency increases, reaching 16.16 %. Originality. It has been established that due to the limitation of the duration of the armature winding current, the power indicators of the LPECIT increase when operating as a shock-power device and the speed indicators when the LPECIT operates as an electromechanical accelerator. Practical value. It was found that with the help of a rectifier diode connected to the multi-turn winding of the armature, unipolarity of the current is ensured, which leads to the elimination of the EDF of attraction and an increase in the performance of the LPECIT.
Gli stili APA, Harvard, Vancouver, ISO e altri
22

Annenkov, Vladimir, Evgeny Berendeev, Evgeniia Volchok e Igor Timofeev. "Particle-in-Cell Simulations of High-Power THz Generator Based on the Collision of Strongly Focused Relativistic Electron Beams in Plasma". Photonics 8, n. 6 (21 maggio 2021): 172. http://dx.doi.org/10.3390/photonics8060172.

Testo completo
Abstract (sommario):
Based on particle-in-cell simulations, we propose to generate sub-nanosecond pulses of narrowband terahertz radiation with tens of MW power using unique properties of kiloampere relativistic (2 MeV) electron beams produced by linear induction accelerators. Due to small emittance of such beams, they can be focused into millimeter and sub-millimeter spots comparable in sizes with the wavelength of THz radiation. If such a beam is injected into a plasma, it becomes unstable against the two-stream instability and excites plasma oscillations that can be converted to electromagnetic waves at the plasma frequency and its harmonics. It is shown that several radiation mechanisms with high efficiency of power conversion (∼1%) come into play when the radial size of the beam–plasma system becomes comparable with the wavelength of the emitted waves.
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Korsbäck, Anders, Flyura Djurabekova e Walter Wuensch. "Statistics of vacuum electrical breakdown clustering and the induction of follow-up breakdowns". AIP Advances 12, n. 11 (1 novembre 2022): 115317. http://dx.doi.org/10.1063/5.0111677.

Testo completo
Abstract (sommario):
Understanding the underlying physics of vacuum electrical breakdown is of relevance for the development of technologies where breakdown is of significance, either as an intended part of device operation or as a cause of failure. One prominent contemporary case of the latter is high-gradient linear accelerators, where structures must be able to operate with both high surface electric fields and low breakdown rates. Temporal clustering of breakdowns has for long been observed in accelerating structures. In this work, the statistics of breakdown clustering were studied using data collected by a system applying DC voltage pulses over parallel disk electrodes in a vacuum chamber. It was found that the obtained distributions of cluster sizes can be explained by postulating that every breakdown induces a number of follow-up breakdowns that are Poisson-distributed with λ < 1. It was also found that the primary breakdown rate, i.e., the breakdown rate after discounting follow-up breakdowns, fluctuates over time but has no discernible correlation with cluster size. Considered together, these results provide empirical support for the interpretation that primary and follow-up breakdowns are categorically different kinds of events with different underlying causes and mechanisms. Furthermore, they support the interpretation that there is an actual causal relationship between the breakdowns in a cluster rather than them simply being concurrent events with a common underlying cause.
Gli stili APA, Harvard, Vancouver, ISO e altri
24

Peskov, N. Yu, N. S. Ginzburg, A. M. Malkin, A. S. Sergeev, V. Yu Zaslavsky, A. K. Kaminsky, S. N. Sedykh et al. "Development of powerful long-pulse Bragg FELs operating from sub-THz to THz bands based on linear induction accelerators: recent results and projects". EPJ Web of Conferences 195 (2018): 01010. http://dx.doi.org/10.1051/epjconf/201819501010.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
25

Logachev, P. V., G. I. Kuznetsov, A. A. Korepanov, A. V. Akimov, S. V. Shiyankov, O. A. Pavlov, D. A. Starostenko e G. A. Fat’kin. "LIU-2 linear induction accelerator". Instruments and Experimental Techniques 56, n. 6 (novembre 2013): 672–79. http://dx.doi.org/10.1134/s0020441213060195.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
26

Bresie, D. A., J. A. Andrews e S. W. Ingram. "Parametric approach to linear induction accelerator design". IEEE Transactions on Magnetics 27, n. 1 (gennaio 1991): 390–93. http://dx.doi.org/10.1109/20.101063.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
27

Sandalov, Evgeny S., Stanislav L. Sinitsky, Alexander V. Burdakov, Petr A. Bak, Kirill I. Zhivankov, Ermek K. Kenzhebulatov, Pavel V. Logachev, Dmitrii I. Skovorodin, Alexander R. Akhmetov e Oleg A. Nikitin. "Electrodynamic System of the Linear Induction Accelerator Module". IEEE Transactions on Plasma Science 49, n. 2 (febbraio 2021): 718–28. http://dx.doi.org/10.1109/tps.2020.3045345.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
28

Starostenko, D., A. Akimov, P. Bak, D. Bolkhovityanov, Ya Kulenko, P. Logachev, D. Nikiforov et al. "Beam Dynamics of Linear Induction Accelerator LIA-2". Physics of Particles and Nuclei Letters 19, n. 4 (26 luglio 2022): 393–96. http://dx.doi.org/10.1134/s1547477122040197.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
29

Huang Ziping, 黄子平, 蒋薇 Jiang Wei e 叶毅 Ye Yi. "Reset system for multi-pulse linear induction accelerator". High Power Laser and Particle Beams 26, n. 4 (2014): 45101. http://dx.doi.org/10.3788/hplpb20142604.45101.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
30

Zhang Huang, 张篁, 陈德彪 Chen Debiao, 江孝国 Jiang Xiaoguo, 夏连胜 Xia Liansheng, 刘星光 Liu Xingguang, 谌怡 Chen Yi e 章林文 Zhang Linwen. "Experimental research on photocathode for linear induction accelerator". High Power Laser and Particle Beams 22, n. 3 (2010): 583–86. http://dx.doi.org/10.3788/hplpb20102203.0583.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
31

Yang Changhong, 杨长鸿, 蒙林 Meng Lin, 张开志 Zhang Kaizhi, 章文卫 Zhang Wenwei e 刘大刚 Liu Dagang. "Simulation of transport process for linear induction accelerator". High Power Laser and Particle Beams 22, n. 4 (2010): 913–17. http://dx.doi.org/10.3788/hplpb20102204.0913.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
32

Ekdahl, Carl, Joshua E. Coleman e Brian Trent McCuistian. "Beam Breakup in an Advanced Linear Induction Accelerator". IEEE Transactions on Plasma Science 44, n. 7 (luglio 2016): 1094–102. http://dx.doi.org/10.1109/tps.2016.2571123.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
33

Sharma, Archana, K. Senthil, D. D. Praveen Kumar, S. Mitra, V. Sharma, A. Patel, D. K. Sharma et al. "Preliminary results of Linear Induction Accelerator LIA-200". Journal of Instrumentation 5, n. 05 (4 maggio 2010): P05001. http://dx.doi.org/10.1088/1748-0221/5/05/p05001.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
34

Chen, Yinbao, e M. Reiser. "Radial focusing in a linear induction accelerator gap". Journal of Applied Physics 65, n. 9 (maggio 1989): 3324–28. http://dx.doi.org/10.1063/1.342643.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
35

Ekdahl, Carl. "Tuning the DARHT Long-Pulse Linear Induction Accelerator". IEEE Transactions on Plasma Science 41, n. 10 (ottobre 2013): 2774–80. http://dx.doi.org/10.1109/tps.2013.2256933.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
36

Ekdahl, Carl, E. O. Abeyta, P. Aragon, R. Archuleta, G. Cook, D. Dalmas, K. Esquibel et al. "Beam Dynamics in a Long-pulse Linear Induction Accelerator". Journal of the Korean Physical Society 59, n. 6(1) (15 dicembre 2011): 3448–52. http://dx.doi.org/10.3938/jkps.59.3448.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
37

Ekdahl, Carl, Carl A. Carlson, Daniel K. Frayer, B. Trent McCuistian, Christopher B. Mostrom, Martin E. Schulze e Carsten H. Thoma. "Emittance Growth in the DARHT-II Linear Induction Accelerator". IEEE Transactions on Plasma Science 45, n. 11 (novembre 2017): 2962–73. http://dx.doi.org/10.1109/tps.2017.2755861.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
38

Akimov, A. V., V. E. Akimov, P. A. Bak, V. D. Bochkov, L. T. Vekhoreva, A. A. Korepanov, P. V. Logachev, A. N. Panov, D. A. Starostenko e O. V. Shilin. "A pulse power supply of the linear induction accelerator". Instruments and Experimental Techniques 55, n. 2 (marzo 2012): 218–24. http://dx.doi.org/10.1134/s0020441212010241.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
39

Ekdahl, Carl. "Electron-Beam Corkscrew Motion in an Advanced Linear Induction Accelerator". IEEE Transactions on Plasma Science 49, n. 11 (novembre 2021): 3548–53. http://dx.doi.org/10.1109/tps.2021.3120877.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
40

Yang Changhong, 杨长鸿, 蒙林 Meng Lin, 张开志 Zhang Kaizhi, 章文卫 Zhang Wenwei e 刘大刚 Liu Dagang. "Numerical simulation of beam focusing magnetic field in linear induction accelerator". High Power Laser and Particle Beams 22, n. 6 (2010): 1331–34. http://dx.doi.org/10.3788/hplpb20102206.1331.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
41

Batrakov, Aleksandr M., Pavel V. Logatchev, Anton V. Pavlenko, Vladislav Ya Sazansky e Georgy A. Fatkin. "The Control System of Linear Induction Accelerator for X-Ray Radiography". Siberian Journal of Physics 5, n. 3 (1 ottobre 2010): 98–105. http://dx.doi.org/10.54362/1818-7919-2010-5-3-98-105.

Testo completo
Abstract (sommario):
The structure and hardware of control system for flash X-Ray radiography complex currently under construction in BINP, SB RAS are discussed in this paper. Special features of this control system are: high amount of channels, nanosecond times of main processes, work in environment of powerful noises from pulsed high-voltage devices
Gli stili APA, Harvard, Vancouver, ISO e altri
42

Ekdahl, C., E. O. Abeyta, H. Bender, W. Broste, C. Carlson, L. Caudill, K. C. D. Chan et al. "Initial electron-beam results from the DARHT-II linear induction accelerator". IEEE Transactions on Plasma Science 33, n. 2 (aprile 2005): 892–900. http://dx.doi.org/10.1109/tps.2005.845115.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
43

Ekdahl, Carl, P. Allison, J. E. Coleman, T. Kaupilla, B. T. McCuistian, D. C. Moir e M. Schulze. "Steering an intense relativistic electron beam in a linear induction accelerator". Review of Scientific Instruments 91, n. 2 (1 febbraio 2020): 026102. http://dx.doi.org/10.1063/1.5125421.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
44

Petzoldt, Ronald, Neil Alexander, Lane Carlson, Eric Cotner, Dan Goodin e Robert Kratz. "Linear Induction Accelerator with Magnetic Steering for Inertial Fusion Target Injection". Fusion Science and Technology 68, n. 2 (settembre 2015): 308–13. http://dx.doi.org/10.13182/fst14-915.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
45

Yu Haijun, 禹海军, 朱隽 Zhu Jun, 江孝国 Jiang Xiaoguo, 王远 Wang Yuan, 陈楠 Chen Nan, 张振涛 Zhang Zhentao, 戴文华 Dai Wenhua e 刘承俊 Liu Chengjun. "Damage diagnosis for bremsstrahlung converter target of Dragon-Ⅰ linear induction accelerator". High Power Laser and Particle Beams 23, n. 4 (2011): 1035–38. http://dx.doi.org/10.3788/hplpb20112304.1035.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
46

Ray, R., e A. D. Datta. "An approach to the development of a small-scale linear induction accelerator". Journal of Physics D: Applied Physics 21, n. 9 (14 settembre 1988): 1336–41. http://dx.doi.org/10.1088/0022-3727/21/9/004.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
47

Bogdan, O. V., V. I. Karas’, E. A. Kornilov e O. V. Manuilenko. "2.5-Dimensional numerical simulation of a high-current ion linear induction accelerator". Plasma Physics Reports 34, n. 8 (agosto 2008): 667–77. http://dx.doi.org/10.1134/s1063780x08080059.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
48

Ekdahl, Carl. "The Ion-Hose Instability in a High-Current Multipulse Linear Induction Accelerator". IEEE Transactions on Plasma Science 47, n. 1 (gennaio 2019): 300–306. http://dx.doi.org/10.1109/tps.2018.2872472.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
49

Ekdahl, C., E. O. Abeyta, P. Aragon, R. Archuleta, R. Bartsch, H. Bender, R. Briggs et al. "Long-pulse beam stability experiments on the DARHT-II linear induction accelerator". IEEE Transactions on Plasma Science 34, n. 2 (aprile 2006): 460–66. http://dx.doi.org/10.1109/tps.2006.872481.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
50

Denno, K. "Longitudinal and Radial Mhd Linear Induction Accelerator with Hot Conducting Plasma Core". IEEE Transactions on Nuclear Science 32, n. 5 (ottobre 1985): 3216–18. http://dx.doi.org/10.1109/tns.1985.4334324.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia