Letteratura scientifica selezionata sul tema "Linear equations"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Linear equations".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Linear equations"
Rohn, Jiří. "Interval solutions of linear interval equations". Applications of Mathematics 35, n. 3 (1990): 220–24. http://dx.doi.org/10.21136/am.1990.104406.
Testo completoKurzweil, Jaroslav, e Alena Vencovská. "Linear differential equations with quasiperiodic coefficients". Czechoslovak Mathematical Journal 37, n. 3 (1987): 424–70. http://dx.doi.org/10.21136/cmj.1987.102170.
Testo completoPatel, Roshni V., e Jignesh S. Patel. "Optimization of Linear Equations using Genetic Algorithms". Indian Journal of Applied Research 2, n. 3 (1 ottobre 2011): 56–58. http://dx.doi.org/10.15373/2249555x/dec2012/19.
Testo completoFraňková, Dana. "Substitution method for generalized linear differential equations". Mathematica Bohemica 116, n. 4 (1991): 337–59. http://dx.doi.org/10.21136/mb.1991.126028.
Testo completoSchwabik, Štefan. "Linear Stieltjes integral equations in Banach spaces". Mathematica Bohemica 124, n. 4 (1999): 433–57. http://dx.doi.org/10.21136/mb.1999.125994.
Testo completoCecchi, Mariella, Zuzana Došlá, Mauro Marini e Ivo Vrkoč. "Asymptotic properties for half-linear difference equations". Mathematica Bohemica 131, n. 4 (2006): 347–63. http://dx.doi.org/10.21136/mb.2006.133970.
Testo completoDavies, Alan, e Rainer Kress. "Linear Integral Equations". Mathematical Gazette 74, n. 470 (dicembre 1990): 405. http://dx.doi.org/10.2307/3618171.
Testo completoS., F., e Rainer Kress. "Linear Integral Equations." Mathematics of Computation 56, n. 193 (gennaio 1991): 379. http://dx.doi.org/10.2307/2008551.
Testo completoSTEWART, G. W. "Solving Linear Equations". Science 236, n. 4800 (24 aprile 1987): 461–62. http://dx.doi.org/10.1126/science.236.4800.461.
Testo completoPAN, V., e J. H. REIF. "Response:Solving Linear Equations". Science 236, n. 4800 (24 aprile 1987): 462–63. http://dx.doi.org/10.1126/science.236.4800.462.
Testo completoTesi sul tema "Linear equations"
Yesilyurt, Deniz. "Solving Linear Diophantine Equations And Linear Congruential Equations". Thesis, Linnéuniversitetet, Institutionen för datavetenskap, fysik och matematik, DFM, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-19247.
Testo completoChen, Huyuan. "Fully linear elliptic equations and semilinear fractionnal elliptic equations". Thesis, Tours, 2014. http://www.theses.fr/2014TOUR4001/document.
Testo completoThis thesis is divided into six parts. The first part is devoted to prove Hadamard properties and Liouville type theorems for viscosity solutions of fully nonlinear elliptic partial differential equations with gradient term
Goedhart, Eva Govinda. "Explicit bounds for linear difference equations /". Electronic thesis, 2005. http://etd.wfu.edu/theses/available/etd-05102005-222845/.
Testo completoJonklass, Raymond. "Learners' strategies for solving linear equations". Thesis, Stellenbosch : Stellenbosch University, 2002. http://hdl.handle.net/10019.1/52915.
Testo completoENGLISH ABSTRACT: Algebra deals amongst others with the relationship between variables. It differs from Arithmetic amongst others as there is not always a numerical solution to the problem. An algebraic expression can even be the solution to the problem in Algebra. The variables found in Algebra are often represented by letters such as X, y, etc. Equations are an integral part of Algebra. To solve an equation, the value of an unknown must be determined so that the left hand side of the equation is equal to the right hand side. There are various ways in which the solving of equations can be taught. The purpose of this study is to determine the existence of a cognitive gap as described by Herseovies & Linchevski (1994) in relation to solving linear equations. When solving linear equations, an arithmetical approach is not always effective. A new way of structural thinking is needed when solving linear equations in their different forms. In this study, learners' intuitive, informal ways of solving linear equations were examined prior to any formal instruction and before the introduction of algebraic symbols and notation. This information could help educators to identify the difficulties learners have when moving from solving arithmetical equations to algebraic equations. The learners' errors could help educators plan effective ways of teaching strategies when solving linear equations. The research strategy for this study was both quantitative and qualitative. Forty-two Grade 8 learners were chosen to individually do assignments involving different types of linear equations. Their responses were recorded, coded and summarised. Thereafter the learners' responses were interpreted, evaluated and analysed. Then a representative sample of fourteen learners was chosen randomly from the same class and semi-structured interviews were conducted with them From these interviews the learners' ways of thinking when solving linear equations, were probed. This study concludes that a cognitive gap does exist in the context of the investigation. Moving from arithmetical thinking to algebraic thinking requires a paradigm shift. To make adequate provision for this change in thinking, careful curriculum planning is required.
AFRIKAANSE OPSOMMING: Algebra behels onder andere die verwantskap tussen veranderlikes. Algebra verskil van Rekenkunde onder andere omdat daar in Algebra nie altyd 'n numeriese oplossing vir die probleem is nie. InAlgebra kan 'n algebraïese uitdrukking somtyds die oplossing van 'n probleem wees. Die veranderlikes in Algebra word dikwels deur letters soos x, y, ens. voorgestel. Vergelykings is 'n integrale deel van Algebra. Om vergelykings op te los, moet 'n onbekende se waarde bepaal word, om die linkerkant van die vergelyking gelyk te maak aan die regterkant. Daar is verskillende maniere om die oplossing van algebraïese vergelykings te onderrig. Die doel van hierdie studie is om die bestaan van 'n sogenaamde "kognitiewe gaping" soos beskryf deur Herseovies & Linchevski (1994), met die klem op lineêre vergelykings, te ondersoek. Wanneer die oplossing van 'n linêere vergelyking bepaal word, is 'n rekenkundige benadering nie altyd effektiefnie. 'n Heel nuwe, strukturele manier van denke word benodig wanneer verskillende tipes linêere vergelykings opgelos word. In hierdie studie word leerders se intuitiewe, informele metodes ondersoek wanneer hulle lineêre vergelykings oplos, voordat hulle enige formele metodes onderrig is en voordat hulle kennis gemaak het met algebraïese simbole en notasie. Hierdie inligting kan opvoeders help om leerders se kognitiewe probleme in verband met die verskil tussen rekenkundige en algebraïese metodes te identifiseer.Die foute wat leerders maak, kan opvoeders ook help om effektiewe onderrigmetodes te beplan, wanneer hulle lineêre vergelykings onderrig. As leerders eers die skuif van rekenkundige metodes na algebrarese metodes gemaak het, kan hulle besef dat hul primitiewe metodes nie altyd effektief is nie. Die navorsingstrategie wat in hierdie studie aangewend is, is kwalitatief en kwantitatief Twee-en-veertig Graad 8 leerders is gekies om verskillende tipes lineêre vergelykings individueel op te los. Hul antwoorde is daarna geïnterpreteer, geëvalueer en geanaliseer. Daarna is veertien leerders uit hierdie groep gekies en semigestruktureerde onderhoude is met hulle gevoer. Vanuit die onderhoude kon 'n dieper studie van die leerders se informele metodes van oplossing gemaak word. Die gevolgtrekking wat in hierdie studie gemaak word, is dat daar wel 'n kognitiewe gaping bestaan in die konteks van die studie. Leerders moet 'n paradigmaskuif maak wanneer hulle van rekenkundige metodes na algebraïese metodes beweeg. Hierdie klemverskuiwing vereis deeglike kurrikulumbeplanning.
Altassan, Alaa Abdullah. "Linear equations over free Lie algebras". Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/linear-equations-over-free-liealgebras(6e29b286-1869-4207-b054-8baab98e70df).html.
Testo completoChen, Hua, Wei-Xi Li e Chao-Jiang Xu. "Gevrey hypoellipticity for linear and non-linear Fokker-Planck equations". Universität Potsdam, 2007. http://opus.kobv.de/ubp/volltexte/2009/3028/.
Testo completoHafez, Salah Taha. "Continued fractions and solutions of linear and non-linear lattice equations". Thesis, University of Kent, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236725.
Testo completoTorshage, Axel. "Linear Functional Equations and Convergence of Iterates". Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-56450.
Testo completoGrey, David John. "Parallel solution of power system linear equations". Thesis, Durham University, 1995. http://etheses.dur.ac.uk/5429/.
Testo completoSerna, Rodrigo. "Solving Linear Systems of Equations in Hardware". Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-200610.
Testo completoLibri sul tema "Linear equations"
Kanwal, Ram P. Linear Integral Equations. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6012-1.
Testo completoKress, Rainer. Linear Integral Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-97146-4.
Testo completoKress, Rainer. Linear Integral Equations. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-0559-3.
Testo completoKanwal, Ram P. Linear Integral Equations. Boston, MA: Birkhäuser Boston, 1997. http://dx.doi.org/10.1007/978-1-4612-0765-8.
Testo completoKress, Rainer. Linear Integral Equations. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-9593-2.
Testo completoLinear integral equations. 2a ed. Boston: Birkhäuser, 1997.
Cerca il testo completoLovitt, William Vernon. Linear integral equations. Mineola, N.Y: Dover Publications, 2005.
Cerca il testo completoKress, Rainer. Linear Integral Equations. New York, NY: Springer New York, 1999.
Cerca il testo completoKress, Rainer. Linear Integral Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989.
Cerca il testo completoWoodford, Chris. Solving linear and non-linear equations. New York: Ellis Horwood, 1992.
Cerca il testo completoCapitoli di libri sul tema "Linear equations"
Afriat, S. N. "Linear Equations". In Linear Dependence, 67–88. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4273-5_7.
Testo completoMiyake, Toshitsune. "Linear Equations". In Linear Algebra, 33–59. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6994-1_2.
Testo completoMüller, P. C., e W. O. Schiehlen. "Matrix equations". In Linear vibrations, 296–306. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5047-4_13.
Testo completoStroud, K. A., e Dexter Booth. "Linear equations and simultaneous linear equations". In Foundation Mathematics, 184–202. London: Macmillan Education UK, 2009. http://dx.doi.org/10.1057/978-0-230-36672-5_5.
Testo completoKinzel, Wolfgang, e Georg Reents. "Linear Equations". In Physics by Computer, 47–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-46839-1_3.
Testo completoHolden, K., e A. W. Pearson. "Linear Equations". In Introductory Mathematics for Economics and Business, 1–42. London: Macmillan Education UK, 1992. http://dx.doi.org/10.1007/978-1-349-22357-2_1.
Testo completoWoodford, C., e C. Phillips. "Linear Equations". In Numerical Methods with Worked Examples: Matlab Edition, 17–45. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-1366-6_2.
Testo completoRedfern, Darren, e Colin Campbell. "Linear Equations". In The Matlab® 5 Handbook, 21–41. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-2170-8_3.
Testo completoRao, A. Ramachandra, e P. Bhimasankaram. "Linear equations". In Texts and Readings in Mathematics, 185–217. Gurgaon: Hindustan Book Agency, 2000. http://dx.doi.org/10.1007/978-93-86279-01-9_6.
Testo completoVerhulst, Ferdinand. "Linear Equations". In Universitext, 69–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61453-8_6.
Testo completoAtti di convegni sul tema "Linear equations"
Bronstein, Manuel. "Linear ordinary differential equations". In Papers from the international symposium. New York, New York, USA: ACM Press, 1992. http://dx.doi.org/10.1145/143242.143264.
Testo completoZadrzyńska, Ewa, e Wojciech M. Zajączkowski. "Some linear parabolic system in Besov spaces". In Parabolic and Navier–Stokes equations. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc81-0-36.
Testo completoFREDET, A. "ALGORITHMS AROUND LINEAR DIFFERENTIAL EQUATIONS". In Proceedings of the International Conference. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812770752_0018.
Testo completoBerkenbosch, Maint. "Moduli spaces for linear differential equations". In The Conference on Differential Equations and the Stokes Phenomenon. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776549_0002.
Testo completoMIGUEL, JOSÉ J., ANDREI SHINDIAPIN e ARCADY PONOSOV. "STABILITY AND LINEAR CHAIN TRICK". In Proceedings of the International Conference on Differential Equations. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812702067_0194.
Testo completoGuihong Wang, Haiyan Liu e Xiangfeng Liu. "The application of excel in solving linear equations and nonlinear equation". In 2011 International Conference on Computer Science and Service System (CSSS). IEEE, 2011. http://dx.doi.org/10.1109/csss.2011.5974400.
Testo completoČermák, Jan A. N. "The Schröder equation and asymptotic properties of linear delay differential equations". In The 7'th Colloquium on the Qualitative Theory of Differential Equations. Szeged: Bolyai Institute, SZTE, 2003. http://dx.doi.org/10.14232/ejqtde.2003.6.6.
Testo completoChochiev, T. Z. "On non-linear equation, generalizing the equations of the Riccati class". In General question of world science. "Л-Журнал", 2018. http://dx.doi.org/10.18411/gq-31-03-2018-01.
Testo completoStevens, B. L. "Derivation of aircraft, linear state equations from implicit nonlinear equations". In 29th IEEE Conference on Decision and Control. IEEE, 1990. http://dx.doi.org/10.1109/cdc.1990.203642.
Testo completoLASSAS, MATTI. "INVERSE PROBLEMS FOR LINEAR AND NON-LINEAR HYPERBOLIC EQUATIONS". In International Congress of Mathematicians 2018. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789813272880_0199.
Testo completoRapporti di organizzazioni sul tema "Linear equations"
Jain, Himanshu, Edmund M. Clarke e Orna Grumberg. Efficient Craig Interpolation for Linear Diophantine (Dis)Equations and Linear Modular Equations. Fort Belvoir, VA: Defense Technical Information Center, febbraio 2008. http://dx.doi.org/10.21236/ada476801.
Testo completoCohen, Herbert E. The Instability of Linear Heterogeneous Lanchester Equations. Fort Belvoir, VA: Defense Technical Information Center, novembre 1991. http://dx.doi.org/10.21236/ada243519.
Testo completoNirenberg, Louis. Techniques in Linear and Nonlinear Partial Differential Equations. Fort Belvoir, VA: Defense Technical Information Center, settembre 1987. http://dx.doi.org/10.21236/ada187109.
Testo completoRundell, William, e Michael S. Pilant. Undetermined Coefficient Problems for Quasi-Linear Parabolic Equations. Fort Belvoir, VA: Defense Technical Information Center, settembre 1992. http://dx.doi.org/10.21236/ada256012.
Testo completoPilant, Michael S., e William Rundell. Undetermined Coefficient Problems for Quasi-Linear Parabolic Equations. Fort Belvoir, VA: Defense Technical Information Center, dicembre 1989. http://dx.doi.org/10.21236/ada218462.
Testo completoSubasi, Yigit. Quantum algorithms for linear systems of equations [Slides]. Office of Scientific and Technical Information (OSTI), dicembre 2017. http://dx.doi.org/10.2172/1774402.
Testo completoMathia, Karl. Solutions of linear equations and a class of nonlinear equations using recurrent neural networks. Portland State University Library, gennaio 2000. http://dx.doi.org/10.15760/etd.1354.
Testo completoParzen, George. Linear Orbits Parameters for the Exact Equations of Motion. Office of Scientific and Technical Information (OSTI), febbraio 1994. http://dx.doi.org/10.2172/1119381.
Testo completoChen, Goong, e Han-Kun Wang. Pointwise Stabilization for Coupled Quasilinear and Linear Wave Equations. Fort Belvoir, VA: Defense Technical Information Center, gennaio 1988. http://dx.doi.org/10.21236/ada190031.
Testo completoHerzog, K. J., M. D. Morris e T. J. Mitchell. Bayesian approximation of solutions to linear ordinary differential equations. Office of Scientific and Technical Information (OSTI), novembre 1990. http://dx.doi.org/10.2172/6242347.
Testo completo