Letteratura scientifica selezionata sul tema "Lie groups"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Lie groups".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Lie groups"
Hiraga, Kaoru. "Lie groups". Duke Mathematical Journal 85, n. 1 (ottobre 1996): 167–81. http://dx.doi.org/10.1215/s0012-7094-96-08507-5.
Testo completoAlekseevskii, D. V. "Lie groups". Journal of Soviet Mathematics 28, n. 6 (marzo 1985): 924–49. http://dx.doi.org/10.1007/bf02105458.
Testo completoNi, Xiang, e Chengming Bai. "Special symplectic Lie groups and hypersymplectic Lie groups". manuscripta mathematica 133, n. 3-4 (30 giugno 2010): 373–408. http://dx.doi.org/10.1007/s00229-010-0375-z.
Testo completoHOFMANN, K. H., e K. H. NEEB. "Pro-Lie groups which are infinite-dimensional Lie groups". Mathematical Proceedings of the Cambridge Philosophical Society 146, n. 2 (marzo 2009): 351–78. http://dx.doi.org/10.1017/s030500410800128x.
Testo completoWüstner, Michael. "Splittable Lie Groups and Lie Algebras". Journal of Algebra 226, n. 1 (aprile 2000): 202–15. http://dx.doi.org/10.1006/jabr.1999.8162.
Testo completoHofmann, Karl H., Sidney A. Morris e Markus Stroppel. "Locally compact groups, residual Lie groups, and varieties generated by Lie groups". Topology and its Applications 71, n. 1 (giugno 1996): 63–91. http://dx.doi.org/10.1016/0166-8641(95)00068-2.
Testo completoHoward, Eric. "Theory of groups and symmetries: Finite groups, Lie groups and Lie algebras". Contemporary Physics 60, n. 3 (3 luglio 2019): 275. http://dx.doi.org/10.1080/00107514.2019.1663933.
Testo completoPressley, Andrew N. "LIE GROUPS AND ALGEBRAIC GROUPS". Bulletin of the London Mathematical Society 23, n. 6 (novembre 1991): 612–14. http://dx.doi.org/10.1112/blms/23.6.612b.
Testo completoWojtyński, Wojciech. "Lie groups as quotient groups". Reports on Mathematical Physics 40, n. 2 (ottobre 1997): 373–79. http://dx.doi.org/10.1016/s0034-4877(97)85935-6.
Testo completoDoran, C., D. Hestenes, F. Sommen e N. Van Acker. "Lie groups as spin groups". Journal of Mathematical Physics 34, n. 8 (agosto 1993): 3642–69. http://dx.doi.org/10.1063/1.530050.
Testo completoTesi sul tema "Lie groups"
Eddy, Scott M. "Lie Groups and Lie Algebras". Youngstown State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1320152161.
Testo completoAhluwalia, Kanwardeep Singh. "Lie bialgebras and Poisson lie groups". Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.388758.
Testo completopl, tomasz@uci agh edu. "A Lie Group Structure on Strict Groups". ESI preprints, 2001. ftp://ftp.esi.ac.at/pub/Preprints/esi1076.ps.
Testo completoHarkins, Andrew. "Combining lattices of soluble lie groups". Thesis, University of Newcastle Upon Tyne, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341777.
Testo completoÖhrnell, Carl. "Lie Groups and PDE". Thesis, Uppsala universitet, Analys och sannolikhetsteori, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-420706.
Testo completoBurroughs, Nigel John. "The quantisation of Lie groups and Lie algebras". Thesis, University of Cambridge, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358486.
Testo completoKrook, Jonathan. "Overview of Lie Groups and Their Lie Algebras". Thesis, KTH, Skolan för teknikvetenskap (SCI), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-275722.
Testo completoLiegrupper kan ses som grupper som även är glatta. Målet med den här rapporten är att definiera Liegrupper som glatta mångfalder, och att undersöka några av liegruppernas egenskaper. Till varje Liegrupp kan man relatera ett vektorrum, som kallas Liegruppens Liealgebra. Vi kommer undersöka vilka egenskaper hos en Liegrupp som kan härledas från dess Liealgebra. Som tillämpning kommer vi karaktärisera alla unitära irreducibla ändligtdimensionella representationer av Liegruppen SO(3).
Ray, Jishnu. "Iwasawa algebras for p-adic Lie groups and Galois groups". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS189/document.
Testo completoA key tool in p-adic representation theory is the Iwasawa algebra, originally constructed by Iwasawa in 1960's to study the class groups of number fields. Since then, it appeared in varied settings such as Lazard's work on p-adic Lie groups and Fontaine's work on local Galois representations. For a prime p, the Iwasawa algebra of a p-adic Lie group G, is a non-commutative completed group algebra of G which is also the algebra of p-adic measures on G. It is a general principle that objects coming from semi-simple, simply connected (split) groups have explicit presentations like Serre's presentation of semi-simple algebras and Steinberg's presentation of Chevalley groups as noticed by Clozel. In Part I, we lay the foundation by giving an explicit description of certain Iwasawa algebras. We first find an explicit presentation (by generators and relations) of the Iwasawa algebra for the principal congruence subgroup of any semi-simple, simply connected Chevalley group over Z_p. Furthermore, we extend the method to give a set of generators and relations for the Iwasawa algebra of the pro-p Iwahori subgroup of GL(n,Z_p). The base change map between the Iwasawa algebras over an extension of Q_p motivates us to study the globally analytic p-adic representations following Emerton's work. We also provide results concerning the globally analytic induced principal series representation under the action of the pro-p Iwahori subgroup of GL(n,Z_p) and determine its condition of irreducibility. In Part II, we do numerical experiments using a computer algebra system SAGE which give heuristic support to Greenberg's p-rationality conjecture affirming the existence of "p-rational" number fields with Galois groups (Z/2Z)^t. The p-rational fields are algebraic number fields whose Galois cohomology is particularly simple and they offer ways of constructing Galois representations with big open images. We go beyond Greenberg's work and construct new Galois representations of the absolute Galois group of Q with big open images in reductive groups over Z_p (ex. GL(n, Z_p), SL(n, Z_p), SO(n, Z_p), Sp(2n, Z_p)). We are proving results which show the existence of p-adic Lie extensions of Q where the Galois group corresponds to a certain specific p-adic Lie algebra (ex. sl(n), so(n), sp(2n)). This relates our work with a more general and classical inverse Galois problem for p-adic Lie extensions
Jimenez, William. "Riemannian submersions and Lie groups". College Park, Md. : University of Maryland, 2005. http://hdl.handle.net/1903/2648.
Testo completoThesis research directed by: Mathematics. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Hindeleh, Firas Y. "Tangent and Cotangent Bundles, Automorphism Groups and Representations of Lie Groups". University of Toledo / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1153933389.
Testo completoLibri sul tema "Lie groups"
Duistermaat, J. J. Lie groups. Berlin: Springer, 2000.
Cerca il testo completoDuistermaat, J. J., e J. A. C. Kolk. Lie Groups. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-56936-4.
Testo completoBump, Daniel. Lie Groups. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8024-2.
Testo completoBump, Daniel. Lie Groups. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/978-1-4757-4094-3.
Testo completoSan Martin, Luiz A. B. Lie Groups. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-61824-7.
Testo completoBourbaki, Nicolas. Lie Groups and Lie Algebras. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-540-89394-3.
Testo completoKomrakov, B. P., I. S. Krasil’shchik, G. L. Litvinov e A. B. Sossinsky, a cura di. Lie Groups and Lie Algebras. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5258-7.
Testo completoSerre, Jean-Pierre. Lie Algebras and Lie Groups. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-540-70634-2.
Testo completoBourbaki, Nicolas. Lie groups and Lie algebras. Berlin: Springer, 2004.
Cerca il testo completoNicolas Bourbaki. Lie groups and Lie algebras. Berlin: Springer-Verlag, 1989.
Cerca il testo completoCapitoli di libri sul tema "Lie groups"
Duistermaat, J. J., e J. A. C. Kolk. "Lie Groups and Lie Algebras". In Lie Groups, 1–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-56936-4_1.
Testo completoSan Martin, Luiz A. B. "Lie Groups and Lie Algebras". In Lie Groups, 87–116. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-61824-7_5.
Testo completoJeevanjee, Nadir. "Groups, Lie Groups, and Lie Algebras". In An Introduction to Tensors and Group Theory for Physicists, 109–86. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-14794-9_4.
Testo completoJeevanjee, Nadir. "Groups, Lie Groups, and Lie Algebras". In An Introduction to Tensors and Group Theory for Physicists, 87–143. Boston: Birkhäuser Boston, 2011. http://dx.doi.org/10.1007/978-0-8176-4715-5_4.
Testo completoOnishchik, Arkadij L., e Ernest B. Vinberg. "Lie Groups". In Lie Groups and Algebraic Groups, 1–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-74334-4_1.
Testo completoBaker, Andrew. "Lie Groups". In Springer Undergraduate Mathematics Series, 181–209. London: Springer London, 2002. http://dx.doi.org/10.1007/978-1-4471-0183-3_7.
Testo completoSontz, Stephen Bruce. "Lie Groups". In Universitext, 93–103. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14765-9_7.
Testo completoSchneider, Peter. "Lie Groups". In Grundlehren der mathematischen Wissenschaften, 89–153. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21147-8_3.
Testo completoSelig, J. M. "Lie Groups". In Monographs in Computer Science, 9–24. New York, NY: Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4757-2484-4_2.
Testo completoRudolph, Gerd, e Matthias Schmidt. "Lie Groups". In Theoretical and Mathematical Physics, 219–67. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-5345-7_5.
Testo completoAtti di convegni sul tema "Lie groups"
Sarlette, Alain, Silvere Bonnabel e Rodolphe Sepulchre. "Coordination on Lie groups". In 2008 47th IEEE Conference on Decision and Control. IEEE, 2008. http://dx.doi.org/10.1109/cdc.2008.4739201.
Testo completoGalaviz, Imelda. "Introductory Lectures on Lie Groups and Lie Algebras". In ADVANCED SUMMER SCHOOL IN PHYSICS 2005: Frontiers in Contemporary Physics EAV05. AIP, 2006. http://dx.doi.org/10.1063/1.2160969.
Testo completoKawazoe, T., T. Oshima e S. Sano. "Representation Theory of Lie Groups and Lie Algebras". In Fuji-Kawaguchiko Conference on Representation Theory of Lie Groups and Lie Algebras. WORLD SCIENTIFIC, 1992. http://dx.doi.org/10.1142/9789814537162.
Testo completoChauchat, Paul, Axel Barrau e Silvere Bonnabel. "Invariant smoothing on Lie Groups". In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018. http://dx.doi.org/10.1109/iros.2018.8594068.
Testo completoAguilar, M. A. "Lie groups and differential geometry". In The XXX Latin American school of physics ELAF: Group theory and its applications. AIP, 1996. http://dx.doi.org/10.1063/1.50217.
Testo completoSatici, Aykut C., e Mark W. Spong. "Connectivity control on Lie groups". In 2013 9th Asian Control Conference (ASCC). IEEE, 2013. http://dx.doi.org/10.1109/ascc.2013.6606252.
Testo completoKun, Gabor. "Differential games on Lie groups". In 2001 European Control Conference (ECC). IEEE, 2001. http://dx.doi.org/10.23919/ecc.2001.7075873.
Testo completoAkter, Sharmin, Md Monirul Islam, Md Rokunojjaman e Salma Nasrin. "Operations of Lie Groups and Lie Algebras on Manifolds". In 2021 International Conference on Science & Contemporary Technologies (ICSCT). IEEE, 2021. http://dx.doi.org/10.1109/icsct53883.2021.9642569.
Testo completoMAKARENKO, N. YU. "GROUPS AND LIE RINGS WITH FROBENIUS GROUPS OF AUTOMORPHISMS". In Proceedings of the Conference. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814350051_0017.
Testo completoGomez, X., e S. Majid. "Relating quantum and braided Lie algebras". In Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-6.
Testo completoRapporti di organizzazioni sul tema "Lie groups"
Arvanitoyeorgos, Andreas. Lie Transformation Groups and Geometry. GIQ, 2012. http://dx.doi.org/10.7546/giq-9-2008-11-35.
Testo completoAxford, R. A. Construction of Difference Equations Using Lie Groups. Office of Scientific and Technical Information (OSTI), agosto 1998. http://dx.doi.org/10.2172/1172.
Testo completoGilmore, Robert. Relations Among Low-dimensional Simple Lie Groups. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-28-2012-1-45.
Testo completoClubok, Kenneth Sherman. Conformal field theory on affine Lie groups. Office of Scientific and Technical Information (OSTI), aprile 1996. http://dx.doi.org/10.2172/260974.
Testo completoKrishnaprasad, P. S., e Dimitris P. Tsakiris. G-Snakes: Nonholonomic Kinematic Chains on Lie Groups. Fort Belvoir, VA: Defense Technical Information Center, dicembre 1994. http://dx.doi.org/10.21236/ada453004.
Testo completoCohen, Frederick R., Mentor Stafa e V. Reiner. On Spaces of Commuting Elements in Lie Groups. Fort Belvoir, VA: Defense Technical Information Center, febbraio 2014. http://dx.doi.org/10.21236/ada606720.
Testo completoMcHardy, James David, Elias Davis Clark, Joseph H. Schmidt e Scott D. Ramsey. Lie groups of variable cross-section channel flow. Office of Scientific and Technical Information (OSTI), maggio 2019. http://dx.doi.org/10.2172/1523203.
Testo completoSchmid, Rudolf. Infinite Dimentional Lie Groups With Applications to Mathematical Physics. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-1-2004-54-120.
Testo completoIkawa, Osamu. Motion of Charged Particles in Two-Step Nilpotent Lie Groups. GIQ, 2012. http://dx.doi.org/10.7546/giq-12-2011-252-262.
Testo completoBernatska, Julia. Geometry and Topology of Coadjoint Orbits of Semisimple Lie Groups. GIQ, 2012. http://dx.doi.org/10.7546/giq-9-2008-146-166.
Testo completo