Letteratura scientifica selezionata sul tema "Lattice theory"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Lattice theory".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Lattice theory"
Day, Alan. "Doubling Constructions in Lattice Theory". Canadian Journal of Mathematics 44, n. 2 (1 aprile 1992): 252–69. http://dx.doi.org/10.4153/cjm-1992-017-7.
Testo completoHarremoës, Peter. "Entropy Inequalities for Lattices". Entropy 20, n. 10 (12 ottobre 2018): 784. http://dx.doi.org/10.3390/e20100784.
Testo completoFlaut, Cristina, Dana Piciu e Bianca Liana Bercea. "Some Applications of Fuzzy Sets in Residuated Lattices". Axioms 13, n. 4 (18 aprile 2024): 267. http://dx.doi.org/10.3390/axioms13040267.
Testo completoMcCulloch, Ryan. "Finite groups with a trivial Chermak–Delgado subgroup". Journal of Group Theory 21, n. 3 (1 maggio 2018): 449–61. http://dx.doi.org/10.1515/jgth-2017-0042.
Testo completoJežek, J., P. PudláK e J. Tůma. "On equational theories of semilattices with operators". Bulletin of the Australian Mathematical Society 42, n. 1 (agosto 1990): 57–70. http://dx.doi.org/10.1017/s0004972700028148.
Testo completoBallal, Sachin, e Vilas Kharat. "Zariski topology on lattice modules". Asian-European Journal of Mathematics 08, n. 04 (17 novembre 2015): 1550066. http://dx.doi.org/10.1142/s1793557115500667.
Testo completoJežek, Jaroslav, e George F. McNulty. "The existence of finitely based lower covers for finitely based equational theories". Journal of Symbolic Logic 60, n. 4 (dicembre 1995): 1242–50. http://dx.doi.org/10.2307/2275885.
Testo completoFuta, Yuichi, e Yasunari Shidama. "Lattice of ℤ-module". Formalized Mathematics 24, n. 1 (1 marzo 2016): 49–68. http://dx.doi.org/10.1515/forma-2016-0005.
Testo completoBronzan, J. B. "Hamiltonian lattice gauge theory: wavefunctions on large lattices". Nuclear Physics B - Proceedings Supplements 30 (marzo 1993): 916–19. http://dx.doi.org/10.1016/0920-5632(93)90356-b.
Testo completoJANSEN, KARL. "LATTICE FIELD THEORY". International Journal of Modern Physics E 16, n. 09 (ottobre 2007): 2638–79. http://dx.doi.org/10.1142/s0218301307008355.
Testo completoTesi sul tema "Lattice theory"
Race, David M. (David Michael). "Consistency in Lattices". Thesis, North Texas State University, 1986. https://digital.library.unt.edu/ark:/67531/metadc331688/.
Testo completoRadu, Ion. "Stone's representation theorem". CSUSB ScholarWorks, 2007. https://scholarworks.lib.csusb.edu/etd-project/3087.
Testo completoEndres, Michael G. "Topics in lattice field theory /". Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/9713.
Testo completoBowman, K. "A lattice theory for algebras". Thesis, Lancaster University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234611.
Testo completoMichels, Amanda Therese. "Aspects of lattice gauge theory". Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.297217.
Testo completoBuckle, John Francis. "Computational aspects of lattice theory". Thesis, University of Warwick, 1989. http://wrap.warwick.ac.uk/106446/.
Testo completoCraig, Andrew Philip Knott. "Lattice-valued uniform convergence spaces the case of enriched lattices". Thesis, Rhodes University, 2008. http://hdl.handle.net/10962/d1005225.
Testo completoPugh, David John Rhydwyn. "Topological structures in lattice gauge theory". Thesis, University of Oxford, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.279896.
Testo completoSchaich, David. "Strong dynamics and lattice gauge theory". Thesis, Boston University, 2012. https://hdl.handle.net/2144/32057.
Testo completoIn this dissertation I use lattice gauge theory to study models of electroweak symmetry breaking that involve new strong dynamics. Electroweak symmetry breaking (EWSB) is the process by which elementary particles acquire mass. First proposed in the 1960s, this process has been clearly established by experiments, and can now be considered a law of nature. However, the physics underlying EWSB is still unknown, and understanding it remains a central challenge in particle physics today. A natural possibility is that EWSB is driven by the dynamics of some new, strongly-interacting force. Strong interactions invalidate the standard analytical approach of perturbation theory, making these models difficult to study. Lattice gauge theory is the premier method for obtaining quantitatively-reliable, nonperturbative predictions from strongly-interacting theories. In this approach, we replace spacetime by a regular, finite grid of discrete sites connected by links. The fields and interactions described by the theory are likewise discretized, and defined on the lattice so that we recover the original theory in continuous spacetime on an infinitely large lattice with sites infinitesimally close together. The finite number of degrees of freedom in the discretized system lets us simulate the lattice theory using high-performance computing. Lattice gauge theory has long been applied to quantum chromodynamics, the theory of strong nuclear interactions. Using lattice gauge theory to study dynamical EWSB, as I do in this dissertation, is a new and exciting application of these methods. Of particular interest is non-perturbative lattice calculation of the electroweak S parameter. Experimentally S ~ -0.15(10), which tightly constrains dynamical EWSB. On the lattice, I extract S from the momentum-dependence of vector and axial-vector current correlators. I created and applied computer programs to calculate these correlators and analyze them to determine S. I also calculated the masses and other properties of the new particles predicted by these theories. I find S > 0.1 in the specific theories I study. Although this result still disagrees with experiment, it is much closer to the experimental value than is the conventional wisdom S > 0.3. These results encourage further lattice studies to search for experimentally viable strongly-interacting theories of EWSB.
Schenk, Stefan. "Density functional theory on a lattice". kostenfrei, 2009. http://d-nb.info/998385956/34.
Testo completoLibri sul tema "Lattice theory"
Bunk, B., K. H. Mütter e K. Schilling, a cura di. Lattice Gauge Theory. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2231-3.
Testo completoGrätzer, George. General Lattice Theory. Basel: Birkhäuser Basel, 1996. http://dx.doi.org/10.1007/978-3-0348-9326-8.
Testo completoGrätzer, George. Lattice Theory: Foundation. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0018-1.
Testo completoservice), SpringerLink (Online, a cura di. Lattice Theory: Foundation. Basel: Springer Basel AG, 2011.
Cerca il testo completoStern, Manfred. Semimodular lattices: Theory and applications. Cambridge: Cambridge University Press, 1999.
Cerca il testo completoKrätzel, Ekkehard. Lattice points. Dordrecht: Kluwer Academic Publishers, 1988.
Cerca il testo completoSatz, Helmut, Isabel Harrity e Jean Potvin, a cura di. Lattice Gauge Theory ’86. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1909-2.
Testo completoSatz, H. Lattice Gauge Theory '86. Boston, MA: Springer US, 1987.
Cerca il testo completoH, Satz, Harrity Isabel, Potvin Jean, North Atlantic Treaty Organization. Scientific Affairs Division. e International Workshop "Lattice Gauge Theory 1986" (1986 : Brookhaven National Laboratory), a cura di. Lattice gauge theory '86. New York: Plenum Press, 1987.
Cerca il testo completoos, Paul Erd. Lattice points. Harlow: Longman Scientific & Technical, 1989.
Cerca il testo completoCapitoli di libri sul tema "Lattice theory"
Zheng, Zhiyong, Kun Tian e Fengxia Liu. "Random Lattice Theory". In Financial Mathematics and Fintech, 1–32. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-7644-5_1.
Testo completoAl-Haj Baddar, Sherenaz W., e Kenneth E. Batcher. "Lattice Theory". In Designing Sorting Networks, 61–71. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1851-1_10.
Testo completoRitter, Gerhard X., e Gonzalo Urcid. "Lattice Theory". In Introduction to Lattice Algebra, 81–109. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003154242-3.
Testo completoYadav, Santosh Kumar. "Lattice Theory". In Discrete Mathematics with Graph Theory, 271–304. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-21321-2_6.
Testo completoGrätzer, George. "Lattice Constructions". In Lattice Theory: Foundation, 255–306. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0018-1_4.
Testo completoStone, Michael. "Lattice Field Theory". In Graduate Texts in Contemporary Physics, 185–200. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-0507-4_15.
Testo completoYanagihara, Ryosuke. "Lattice Field Theory". In Springer Theses, 37–53. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-6234-8_3.
Testo completoGrätzer, George. "First Concepts". In General Lattice Theory, 1–77. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-9326-8_1.
Testo completoGrätzer, George. "Distributive Lattices". In General Lattice Theory, 79–168. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-9326-8_2.
Testo completoGrätzer, George. "Congruences and Ideals". In General Lattice Theory, 169–210. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-9326-8_3.
Testo completoAtti di convegni sul tema "Lattice theory"
Monahan, Christopher. "Automated Lattice Perturbation Theory". In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0021.
Testo completoLambrou, Eliana, Luigi Del Debbio, R. D. Kenway e Enrico Rinaldi. "Searching for a continuum 4D field theory arising from a 5D non-abelian gauge theory". In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0107.
Testo completoBursa, F., e Michael Kroyter. "Lattice String Field Theory". In The XXVIII International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2011. http://dx.doi.org/10.22323/1.105.0047.
Testo completoKieburg, Mario, Jacobus Verbaarschot e Savvas Zafeiropoulos. "A classification of 2-dim Lattice Theory". In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0337.
Testo completoShao, Yingchao, Li Fu, Fei Hao e Keyun Qin. "Rough Lattice: A Combination with the Lattice Theory and the Rough Set Theory". In 2016 International Conference on Mechatronics, Control and Automation Engineering. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/mcae-16.2016.23.
Testo completoBietenholz, Wolfgang, Ivan Hip e David Landa-Marban. "Spectral Properties of a 2d IR Conformal Theory". In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0486.
Testo completoZubkov, Mikhail. "Gauge theory of Lorentz group on the lattice". In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0095.
Testo completoVeernala, Aarti, e Simon Catterall. "Four Fermion Interactions in Non Abelian Gauge Theory". In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0108.
Testo completoBergner, Georg, Jens Langelage e Owe Philipsen. "Effective lattice theory for finite temperature Yang Mills". In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0133.
Testo completoHesse, Dirk, Stefan Sint, Francesco Di Renzo, Mattia Dalla Brida e Michele Brambilla. "The Schrödinger Functional in Numerical Stochastic Perturbation Theory". In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0325.
Testo completoRapporti di organizzazioni sul tema "Lattice theory"
McCune, W., e R. Padmanabhan. Single identities for lattice theory and for weakly associative lattices. Office of Scientific and Technical Information (OSTI), marzo 1995. http://dx.doi.org/10.2172/510566.
Testo completoYee, Ken. Lattice gaugefixing and other optics in lattice gauge theory. Office of Scientific and Technical Information (OSTI), giugno 1992. http://dx.doi.org/10.2172/10156563.
Testo completoYee, Ken. Lattice gaugefixing and other optics in lattice gauge theory. Office of Scientific and Technical Information (OSTI), giugno 1992. http://dx.doi.org/10.2172/5082303.
Testo completoBecher, Thomas G. Continuum methods in lattice perturbation theory. Office of Scientific and Technical Information (OSTI), novembre 2002. http://dx.doi.org/10.2172/808671.
Testo completoHasslacher, B. Lattice gas hydrodynamics: Theory and simulations. Office of Scientific and Technical Information (OSTI), gennaio 1993. http://dx.doi.org/10.2172/6441616.
Testo completoHasslacher, B. Lattice gas hydrodynamics: Theory and simulations. Office of Scientific and Technical Information (OSTI), gennaio 1993. http://dx.doi.org/10.2172/6590163.
Testo completoBrower, Richard C. National Computational Infrastructure for Lattice Gauge Theory. Office of Scientific and Technical Information (OSTI), aprile 2014. http://dx.doi.org/10.2172/1127446.
Testo completoNegele, John W. National Computational Infrastructure for Lattice Gauge Theory. Office of Scientific and Technical Information (OSTI), giugno 2012. http://dx.doi.org/10.2172/1165874.
Testo completoReed, Daniel, A. National Computational Infrastructure for Lattice Gauge Theory. Office of Scientific and Technical Information (OSTI), maggio 2008. http://dx.doi.org/10.2172/951263.
Testo completoCreutz, M. Lattice gauge theory and Monte Carlo methods. Office of Scientific and Technical Information (OSTI), novembre 1988. http://dx.doi.org/10.2172/6530895.
Testo completo