Letteratura scientifica selezionata sul tema "Late functionalization"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Late functionalization".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Late functionalization"
Börgel, Jonas, e Tobias Ritter. "Late-Stage Functionalization". Chem 6, n. 8 (agosto 2020): 1877–87. http://dx.doi.org/10.1016/j.chempr.2020.07.007.
Testo completoMcConnell, Cameron R., e Shih-Yuan Liu. "Late-stage functionalization of BN-heterocycles". Chemical Society Reviews 48, n. 13 (2019): 3436–53. http://dx.doi.org/10.1039/c9cs00218a.
Testo completoBellina, Fabio. "Late-stage Functionalization of (hetero)arenes". Current Organic Chemistry 25, n. 18 (22 ottobre 2021): 2045. http://dx.doi.org/10.2174/138527282518211007142734.
Testo completoMiller, Scott J., e Tobias Ritter. "Introduction: Remote and Late Stage Functionalization". Chemical Reviews 123, n. 24 (27 dicembre 2023): 13867–68. http://dx.doi.org/10.1021/acs.chemrev.3c00800.
Testo completoKumar Hota, Sudhir, Dilsha Jinan, Satya Prakash Panda, Rittwika Pan, Basudev Sahoo e Sandip Murarka. "Organophotoredox‐Catalyzed Late‐Stage Functionalization of Heterocycles". Asian Journal of Organic Chemistry 10, n. 8 (7 giugno 2021): 1848–60. http://dx.doi.org/10.1002/ajoc.202100234.
Testo completoCernak, Tim, Kevin D. Dykstra, Sriram Tyagarajan, Petr Vachal e Shane W. Krska. "The medicinal chemist's toolbox for late stage functionalization of drug-like molecules". Chemical Society Reviews 45, n. 3 (2016): 546–76. http://dx.doi.org/10.1039/c5cs00628g.
Testo completoSon, Jongwoo. "Sustainable manganese catalysis for late-stage C–H functionalization of bioactive structural motifs". Beilstein Journal of Organic Chemistry 17 (26 luglio 2021): 1733–51. http://dx.doi.org/10.3762/bjoc.17.122.
Testo completoBarham, Joshua P., e Jaspreet Kaur. "Site-Selective C(sp3)–H Functionalizations Mediated by Hydrogen Atom Transfer Reactions via α-Amino/α-Amido Radicals". Synthesis 54, n. 06 (25 ottobre 2021): 1461–77. http://dx.doi.org/10.1055/a-1677-6619.
Testo completoGreaney, Michael F., e David M. Whalley. "Recent Advances in the Smiles Rearrangement: New Opportunities for Arylation". Synthesis 54, n. 08 (1 dicembre 2021): 1908–18. http://dx.doi.org/10.1055/a-1710-6289.
Testo completoLiu, Zilei, Jie Li, Suhua Li, Gencheng Li, K. Barry Sharpless e Peng Wu. "SuFEx Click Chemistry Enabled Late-Stage Drug Functionalization". Journal of the American Chemical Society 140, n. 8 (16 febbraio 2018): 2919–25. http://dx.doi.org/10.1021/jacs.7b12788.
Testo completoTesi sul tema "Late functionalization"
Brown, Alec Nathaniel. "Late-Stage Functionalization of 1,2-Dihydro-1,2-Azaborines". Thesis, Boston College, 2015. http://hdl.handle.net/2345/bc-ir:104564.
Testo completoDescribed herein are two distinct research projects focused on the development of metal-catalyzed late-stage functionalization strategies for 1,2-dihydro-1,2-azaborines separated into three chapters. The first chapter discusses the development, synthesis, and recent contributions to the field of azaborine chemistry. The second chapter details the development of rhodium catalyzed B-H bond activation for the synthesis of a new class of BN-stilbenes as well as the discovery of a novel B-H to B-Cl transformation that is successful both with B-H azaborines as well as other B-H containing compounds. The third chapter pertains to the development of a B-H and B-Cl tolerant C(3) functionalization strategy through the use of Negishi cross-coupling. Using this methodology, previously unreported isomers of BN-naphthalene and BN-indenyl have been synthesized and characterized
Thesis (PhD) — Boston College, 2015
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Chemistry
Canelli, Tommaso. "Development of tandem C-H borylation/functionalization procedures for late stage functionalization of compounds". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/9273/.
Testo completoBentley, Sierra Kathleen. "Selective Direct Borylation and Late-Stage Functionalization of 1,2-Azaborines:". Thesis, Boston College, 2020. http://hdl.handle.net/2345/bc-ir:109014.
Testo completoDescribed herein is the development of a method to directly borylate the C5-position of monocyclic 1,2-azaborines without the use of a metal catalyst, kinetic resolution or directing group. This method tolerates different substitution on the boron as well as at the C3-position of the azaborine. A new BN-isostere of the drug molecule, felbinac, was synthesized to demonstrate the application of this method
Thesis (MS) — Boston College, 2020
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Chemistry
Kaplaneris, Nikolaos [Verfasser]. "Resource-Economical C–H Activation for Late-Stage Functionalization / Nikolaos Kaplaneris". Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2021. http://d-nb.info/1237128854/34.
Testo completoArmand, Jeremy Richard. "Late Stage Functionalization of 1,2-Azaborines for Application in Biomedical Research:". Thesis, Boston College, 2019. http://hdl.handle.net/2345/bc-ir:108646.
Testo completoChapter 1. Use of boron as a pharmacophore is as growing but still underdeveloped strategy for expanding chemical space in biomedical research. In addition to more established methods of incorporating boron in drug development, an attractive and emerging method of introducing boron into biologically active compounds is through boron-nitrogen containing heterocycles. In particular, the Liu group has focused on exploring the interactions of monocyclic 1,2-azaborines in biological space. In order to install complicated chemical functionality needed for further studies, methods for late stage functionalization of 1,2-azaborines must be developed. Described herein is a method for functionalizing 1,2-azaborine at the C3- and C5-positions, with bromine and iodine handles, respectively. Chapter 2. Described is the application of the turbo Grignard reaction to 1,2-azaborines bearing a B–Cl bond. The reaction utilizes iPrMgCl·LiCl to form aryl carbon nucleophiles and is tolerant of sensitive functional groups such as nitriles and esters. Development of the reaction obviates the need to use toxic organotin reagents to install aryl groups at the B-position that bear sensitive, electrophilic functionalities
Thesis (MS) — Boston College, 2019
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Chemistry
Chan, Jessica Zee. "Stereoselective Functionalization of Carbonyl Compounds and N-Alkylamines Promoted by Cooperative Catalysts:". Thesis, Boston College, 2020. http://hdl.handle.net/2345/bc-ir:108940.
Testo completoThis dissertation describes the development of cooperative catalyst systems for the functionalization of monocarbonyl compounds and stereoselective transformations of alpha-C–H bonds of N-alkylamines, inspired by the concepts of frustrated Lewis pairs (FLPs). Prior to this dissertation research, practical and broadly applicable C–C and C–heteroatom bond forming reactions involving the FLP complexes that provide synthetically desirable products with high enantioselectivity remained to be developed. Chapter 1 of this dissertation describes the recent advances in the transformations involving FLPs and B(C₆F₅)₃-catalyzed reactions. Inspired by the unique capability of FLP catalysts to activate otherwise unreactive molecules, and circumvent undesirable acid–base complexation, we have developed potent cooperative acid/base catalysts for C–C bond forming reactions of various monocarbonyl compounds and an appropriate electrophile, which will be discussed in Chapter 2. Another reactivity of FLPs to be explored has to do with the catalytic and enantioselective reactions of N-alkylamines, where two Lewis acid catalysts with potentially overlapping functions, work cooperatively to activate alpha-amino C–H bonds and promote the enantioselective C–C bond forming reaction between N-alkylamines and a nucleophilic species. In Chapter 3, B(C₆F₅)₃-catalyzed union of N-alkylamines and silicon enolates followed by the enantioselective B(C₆F₅)₃/Mg–PyBOX-catalyzed alpha-alkylation of N-alkylamines and alpha,beta-unsaturated compounds to form beta-amino carbonyl compounds will be described. In Chapter 4, B(C₆F₅)₃/Cu–PyBOX-catalyzed alpha-C–H alkynylation of N-alkylamines and the applications in late-stage functionalization and stereoselective synthesis will be discussed
Thesis (PhD) — Boston College, 2020
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Chemistry
Schischko, Alexandra. "Late-Stage Peptide Functionalization by Ruthenium-Catalyzed C H Arylations and Alkylations". Doctoral thesis, Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2018. http://hdl.handle.net/11858/00-1735-0000-002E-E4F4-0.
Testo completoZhang, Zhuan. "Late Stage Modifications of Phosphines using Transition-Metal-Catalyzed C–H Bond Functionalization". Thesis, Rennes, Ecole nationale supérieure de chimie, 2020. http://www.theses.fr/2020ENCR0067.
Testo completoThe main objective of this PhD thesis deals with the preparation of polyfunctional phosphines by late-stage diversification of commercially available ligands. We have developed rhodium(I)-catalyzed ortho’- C–H bond alkylation of biarylphosphines. This new methodology provides a straightforward access to a large library of multifunctionalized phosphines. Some of these modified ligands outperformed commercially available phosphines in the Pd-catalyzed carboxylation of aryl bromides with carbon dioxide in the presence of a photoredox catalyst. To improve the diversity of biarylphosphines, we have also perfected the P(III)-directed C−H bond alkenylation of (dialkyl)- and (diaryl)biarylphosphines using internal alkynes. Chloride-free [Rh(OAc)(COD)]2 acts as a better catalyst than [RhCl(COD)]2. Conditions were developed to control the mono- and difunctionalization. One of these novel bisalkenylated (dialkyl)biarylphosphines was employed for the preparation of a palladium(II) complex, and some of these functionalized ligands outperformed their corresponding unfunctionalized phosphines in Pd-catalyzed amidation of sterically hindered aryl chlorides. Finally, we have also explored a novel protocol C–H bond alkylation of phosphines via 5- or 7- membered ring cyclometallated phosphineruthenium intermediates. These functionalized phosphines have potential to improve crosscoupling reactions of sterically hindered aryl (pseudo)halides
Poudel, Dhruba P. "Late-Stage Modification of Polyurethane Dendrimers Using Click Chemistry". Miami University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=miami1627490978861964.
Testo completoHanson, Susan Kloek. "Synthesis and reactivity studies of late transition metal complexes relevant to C-H bond activation and functionalization /". Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/8631.
Testo completoLibri sul tema "Late functionalization"
Koepnick, Lutz. Culture in the Shadow of Trauma? A cura di Helmut Walser Smith. Oxford University Press, 2012. http://dx.doi.org/10.1093/oxfordhb/9780199237395.013.0031.
Testo completoCapitoli di libri sul tema "Late functionalization"
Fujiwara, Yuta, e Phil S. Baran. "Radical-Based Late Stage C–H Functionalization of Heteroaromatics in Drug Discovery". In New Horizons of Process Chemistry, 103–20. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3421-3_8.
Testo completoNoisier, Anaïs F. M., e Ranganath Gopalakrishnan. "Oxime/Hydrazone Conjugation at Histidine: Late-Stage Functionalization Approach of Unprotected Peptides". In Methods in Molecular Biology, 35–48. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1617-8_4.
Testo completoKlopsch, Isabel, Ekaterina Yu Yuzik-Klimova e Sven Schneider. "Functionalization of N2 by Mid to Late Transition Metals via N–N Bond Cleavage". In Nitrogen Fixation, 71–112. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/3418_2016_12.
Testo completoFriis, Stig D., Erik Weis e Magnus J. Johansson. "HTE as a Tool in C–H Activation Reaction Discovery and Late-Stage Functionalization of Pharmaceuticals". In The Power of High-Throughput Experimentation: Case Studies from Drug Discovery, Drug Development, and Catalyst Discovery (Volume 2), 161–79. Washington, DC: American Chemical Society, 2022. http://dx.doi.org/10.1021/bk-2022-1420.ch010.
Testo completoTayeb, Azmil. "Overview of state functionalization of national education in Indonesia and Malaysia from the late 1800s to the present". In Islamic Education in Indonesia and Malaysia, 43–83. New York : Routledge, 2018. | Series: Routledge contemporary Southeast Asia series: Routledge, 2018. http://dx.doi.org/10.4324/9781351116862-2.
Testo completoPrato, Maurizio, Michele Maggini e Gianfranco Scorrano. "Organic Functionalization of Fullerenes: Toward Materials and Biological Applications". In The Chemical Physics of Fullerenes 10 (and 5) Years Later, 285–94. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-015-8682-5_19.
Testo completoRubin, Yves. "Recent Aspects of the Functionalization Chemistry of Buckminsterfullerene (C60): Preparation of New materials and compounds of Biological Interest". In The Chemical Physics of Fullerenes 10 (and 5) Years Later, 295–328. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-015-8682-5_20.
Testo completoSberegaeva, Anna V., David Watts e Andrei N. Vedernikov. "Oxidative Functionalization of Late Transition Metal–Carbon Bonds". In Advances in Organometallic Chemistry, 221–97. Elsevier, 2017. http://dx.doi.org/10.1016/bs.adomc.2017.03.001.
Testo completoLiao, Mengjie, e Bo Yao. "Late-Stage Peptide Modification Via Aspartic Acid as Endogenous Directing Group". In Studies in Health Technology and Informatics. IOS Press, 2023. http://dx.doi.org/10.3233/shti230825.
Testo completoRozman, Martin, e Miha Lukšič. "Morphology and Functionalization of Metal Foils and Other Surfaces for Electrochemical Applications". In Handbook of Research on Tribology in Coatings and Surface Treatment, 359–89. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-7998-9683-8.ch015.
Testo completoAtti di convegni sul tema "Late functionalization"
Ahmad, Asad, Nathan Gallant, Rasim Guldiken e Onursal Onen. "Surface Functionalization of an Ovarian Cancer Diagnostic Biosensor". In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-64311.
Testo completoKulcitki, Veaceslav, Catalina Cazacu, Olga Morarescu, Elena Pruteanu, Vladilena Girbu, Nicon Ungur e Philippe Renaud. "Late stage functionalization of unactivated C-H bonds in terpenes – a fruitful field for free radical chemistry". In New frontiers in natural product chemistry, scientific seminar with international participation. Institute of Chemistry, 2021. http://dx.doi.org/10.19261/nfnpc.2021.ab13.
Testo completoBirca, Natalia, e Veaceslav Kulcitki. "Late stage functionalization of cyclic terpenoids by atom transfer radical addition. A convenient route towards nitrogen heterocycles". In Scientific seminar with international participation "New frontiers in natural product chemistry". Institute of Chemistry, Republic of Moldova, 2023. http://dx.doi.org/10.19261/nfnpc.2023.ab12.
Testo completofruit, corinne, thierry besson, Marine Harari e Florence Couly. "Late-Stage Sequential C-H Functionalization of Thiazolo[5,4-f]quina-zolin-9(8H)-one: Synthesis of a Library of Potential Kinase Inhibitors". In The 20th International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 2016. http://dx.doi.org/10.3390/ecsoc-20-b002.
Testo completoLasagni, Andrés, Teja Roch, Matthias Bieda, Dimitri Benke e Eckhard Beyer. "High speed surface functionalization using direct laser interference patterning, towards 1 m2/min fabrication speed with sub-μm resolution". In SPIE LASE, a cura di Udo Klotzbach, Kunihiko Washio e Craig B. Arnold. SPIE, 2014. http://dx.doi.org/10.1117/12.2041215.
Testo completoBittigkoffer, Lucas, Henry Roth, Martin Baumann e Nils-Agne Feth. "Surface Functionalization of Nitinol Utilizing Ultrashort Laser Pulses". In SMST 2024. ASM International, 2024. http://dx.doi.org/10.31399/asm.cp.smst2024p0129.
Testo completoKowalczyk, T. C., T. Z. Kosc, K. D. Singer, A. J. Beuhler, D. A. Wargowski, P. A. Cahill, C. H. Seager e M. B. Meinhardt. "Guest-Host Crosslinked Polyimides for Integrated Optics". In Organic Thin Films for Photonic Applications. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/otfa.1995.md.11.
Testo completo