Tesi sul tema "Lasers attoseconde"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 saggi (tesi di laurea o di dottorato) per l'attività di ricerca sul tema "Lasers attoseconde".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi le tesi di molte aree scientifiche e compila una bibliografia corretta.
Comby, Antoine. "Dynamiques ultrarapides de molécules chirales en phase gazeuse". Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0230/document.
Testo completoChirality is a geometric property that characterizes objects that cannot be superposed on their mirror image. Our hands are an emblematic example of this, since they exist in two different forms, right and left. While chirality is observed at all scales in the universe, it plays a particularly important role in chemistry. A chiral molecule and its mirror image can react differently with their environment and be therapeutic or toxic. These effects obviously have immense repercussions on the animal and plant kingdom. It then becomes clear that it is essential to study precisely the dynamics of chiral chemical reactions.In this thesis, we studied the ultrafast dynamics of chiral molecules by laser sources of femtosecond duration ($10^{-15}$ s). Molecular chirality is generally difficult to detect, so we have used a recent technique, circular photoelectron dichroism (PECD), to generate a very important chiral signal. We have thus observed ultrafast molecular dynamics at the attosecond scale ($10^{-18}$ s), and highlighted relaxation and ionization dynamics never observed before.In parallel to these time-resolved studies, we have developed several experiments using a new high repetition rate, high mean power Yb fiber laser. We have developed a new method, by extending the PECD, that has allowed us to measure the composition of chiral samples quickly and accurately. Finally, we have developed an ultra-short XUV beamline with very high brightness ($sim 2$ mW). This source, coupled with a photoelectron and photoion coincidence detector, will be used to study chiral recognition mechanisms
Haessler, Stefan. "Génération d'Impulsions Attosecondes dans les Atomes et les Molécules". Phd thesis, Université Paris Sud - Paris XI, 2009. http://tel.archives-ouvertes.fr/tel-00440190.
Testo completoKaur, Jaismeen. "Development of an intense attosecond source based on relativistic plasma mirrors at high repetition rate". Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAE007.
Testo completoThe experimental work presented in this manuscript was carried out at Laboratoire d’Optique Appliquée (LOA, Palaiseau, France) on a compact kHz multi-mJ energy laser system capable of delivering waveform-controlled near-single-cycle pulses. The first part of this work is focused on improving the performance of this laser source by integrating a cryogenically-cooled multi-pass amplifier in the laser chain in order to increase the output energy, enhance the laser waveform stability, making the laser source more stable and reliable, and with more overall reproducible day-to-day performance. Furthermore, we explore laser post-compression and temporal contrast enhancement in a multipass cell. In the future, this post-compression scheme when power-scaled and integrated into the laser chain will further enhance the focused pulse intensity for experiments.The second part of this work focuses on using the laser system to drive relativistic plasma mirrors on the surface of initially-solid targets to generate highly energetic particle beams (ions and electrons) and harmonic radiation in the extreme ultraviolet region, corresponding to attosecond pulses (1 as = 10-18 s) in the time domain. We could produce relativistic electron beams by localized injection of electrons into the nonlinearly reflected laser field by the plasma mirror. Additionally, we could generate nearly-collimated MeV-class proton beams in a controlled pump-probe experiment. By stabilizing the waveform of the driving laser pulses, we could temporally gate the interaction process on the target surface and produce isolated attosecond pulses. We performed a comprehensive parameter study to fully characterize and optimize the spatio-spectral properties of the emitted XUV attosecond pulses, laying the groundwork for their refocusing for applications
Barreau, Lou. "Étude de dynamiques de photoionisation résonante à l'aide d'impulsions attosecondes". Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS511/document.
Testo completoIn this work, photoionzation of atomic and molecular species in the gas phase is investigated with high-harmonic radiation. In a first part, electronic dynamics in the autoionization process of rare gases in studied with electron interferometry. This method gives access to the spectral phase of the transition to the autoionizing state, and allows there construction of the entire autoionization dynamics. The ultrafast electronic dynamics, as well as the build-up of the celebrated asymmetric Fano profile, are observed experimentally for the first time. In a second part, photoionization of NO molecules in the molecular frame is used as a polarimeter to completeley characterize the polarization state of high-harmonics. In particular, this method can address the challenging disentanglement of the circular and unpolarized components of the light. The experimental results, completed by numerical simulations, allow defining optimal generation conditions of fully circularly-polarized harmonics for advanced studies of ultrafast dichroisms in matte
Vincenti, Henri. "Génération d'impulsions attosecondes sur miroir plasma relativiste". Palaiseau, Ecole polytechnique, 2012. https://pastel.hal.science/docs/00/78/72/81/PDF/manuscrit.pdf.
Testo completoWhen an ultra intense femtosecond laser ($$I>10^{16}W. Cm^{-2}$$) with high contrast is focused on a solid target, the laser field at focus is high enough to completely ionize the target surface during the rising edge of the laser pulse and form a plasma. This plasma is so dense (the electron density is of the order of hundred times the critical density) that it completely reflects the incident laser beam in the specular direction: this is the so-called " plasma mirror ". When laser intensity becomes very high, the non-linear response of the plasma mirror to the laser field periodically deforms the incident electric field leading to high harmonic generation in the reflected beam. In the temporal domain this harmonic spectrum is associated to a train of attosecond pulses. The goals of my PhD were to get a better comprehension of the properties of harmonic beams produced on plasma mirrors and design new methods to control theses properties, notably in order to produce isolated attosecond pulses instead of trains. Initially, we imagined and modeled the first realistic technique to generate isolated attosecond on plasma mirrors. This brand new approach is based on a totally new physical effect: "the attosecond lighthouse effect". Its principle consists in sending the attosecond pulses of the train in different directions and selects one of these pulses by putting a slit in the far field. Despites its simplicity, this technique is very general and applies to any high harmonic generation mechanisms. Moreover, the attosecond lighthouse effect has many other applications (e. G in metrology). In particular, it paves the way to attosecond pump-probe experiments. Then, we studied the spatial properties of these harmonics, whose control and characterization are crucial if one wants to use this source in future application experiments. For instance, we need to control very precisely the harmonic beam divergence in order to achieve the attosecond lighthouse effect and get isolated attosecond pulses. At very high intensities, the plasma mirror dents and gets curved by the inhomogeneous radiation pressure of the laser field at focus. The plasma mirror surface thus acts as a curved surface, which focuses the harmonic beam in front of the target and fixes its spatial properties. We developed a fully analytical and predictive model for the surface deformation, thanks to which we are now able to calculate very easily the spatial properties of the generated harmonic beams. We validated this model through hundreds of 1D and 2D PIC simulations
Guyetand, O. "Photoionisation simple et double à deux couleurs d'atomes de gaz rares". Phd thesis, Université Paris Sud - Paris XI, 2008. http://tel.archives-ouvertes.fr/tel-00305393.
Testo completoPicot, Corentin. "Génération et caractérisation d'impulsions attosecondes isolées à haute cadence". Electronic Thesis or Diss., Lyon 1, 2024. http://www.theses.fr/2024LYO10161.
Testo completoHigh order harmonic generation is a nonlinear physical phenomenon that occurs by focusing a femtosecond-duration pulse (1 fs = 10^-15 s) in a rare gas. It allows the production of spectra in the UV/XUV range, appearing as a frequency comb. The growing interest in high-order harmonic generation stems from the fact that the generated XUV spectra are compatible, in the time domain, with the production of attosecond pulses (1 as = 10^-18 s). These pulses are of great interest in the study of complex electronic dynamics, photoemission times in atoms or molecules, or even in industrial applications such as lithography studies. Dynamics at the core of atoms occur on atomic time unit scales, with one atomic unit of time equivalent to 24 as. The production of these attosecond pulses is thus relevant for studying these phenomena at the very core of atoms. More specifically, we are interested here in the generation of short attosecond pulse trains and isolated attosecond pulses. High-order harmonic generation allows obtaining attosecond pulse trains, and we seek to isolate one pulse within the pulse train. Spectrally, this translates to the search for a continuous XUV spectrum. In this thesis, we focus on generating these continuous XUV spectra, as well as on the temporal characterization of femtosecond and attosecond pulses. The key aspect lies in the temporal confinement of the XUV emission. In the first part, we demonstrate a robust method to reduce the duration of the fundamental pulses to a few optical cycles. This spectral shaping leads to several subsidiary applications for the spectral shaping of the harmonic spectrum. In the second part, we present a second method to confine the XUV emission by modulating the polarization of the fundamental pulse temporally, using the so-called "polarization gating" method. New configurations of the polarization gate and the spectral effects associated with temporal confinement are described. In the third part, we present the combination of the two methods mentioned in the first two parts to obtain continuous XUV spectra compatible with the generation of isolated attosecond pulses. These continuous spectra were obtained in two laboratories with two different experimental systems. In the final part, we focus on the characterization of femtosecond and attosecond XUV pulses. In particular, we present a classical characterization based on photoelectron signal, allowing the characterization of pulses whose durations are few hundred attoseconds, up to an isolated attosecond pulse. We also propose two new methods based on the observation of the XUV photon signal and the modulation of the polarization of the fundamental pulse. Through these methods, we seek to reconstruct the temporal envelopes of the harmonics
Im, Jinhyeok. "Numerical analysis of spectrograms in attosecond photoionisation". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP175.
Testo completoSince their first observation in the early 200s, attosecond light pulses (1 as = 10^-18 s) in the extreme ultraviolet (XUV) range have revolutionized the study. of electron dynamics in atoms and molecules. Attosecond spectroscopy based on laser-dressed photoionization has made it possible to observe ultrafast processes such as time delays in the photoelectric effect. This approach consists in measuring the kinetic energy of photoelectrons released through the ionization of atoms or molecules by an attosecond pulse combined with a laser pulse. Although the released photoelectron behaves as a quantum wavepacket, its coherence is often degraded for both instrumental and quantum-mechanical reasons. The goal of this work is to develop and apply computational tools to extract decoherence information, in the form of an electron density matrix, from photoelectron kinetic energy spectra. In that perspective, it is crucial to evaluate the reliability of these numerical tools. Therefore we have performed a theoretical study in order to identify the ambiguities and artefacts that can arise in the reconstruction process and to find ways to manage them. We have then analyzed experimental spectrograms previously obtained through the ionization of neon atoms. This study allowed us to confirm quantitatively the origin of the instrumental decoherence observed so far in these experiments. Finally we have for the first time reconstructed a photoelectron density matrix obtained by the ionization of both the 2s and 2p shells of neon
Ricci, Aurélien José. "Développement d'une source laser ultra-brève, stabilisée en phase et à haut contraste pour l'optique relativiste haute cadence". Palaiseau, Ecole polytechnique, 2013. http://www.theses.fr/2013EPXX0020.
Testo completoGuezennec, Tristan. "Sοurces paramétriques fibrées pοmpées par impulsiοns à fοrte dérive de fréquence : Ρerfοrmances et dynamique". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMR074.
Testo completoThe use of coherent Raman spectroscopy in various scientific fields has led to the design of multi-wavelength optical sources. In this context, the development of fiber optical parametric chirped-pulse amplifiers (FOPCPAs), the fiber optical parametric chirped-pulse oscillators (FOPCPOs), has enabled the generation of ultrafast, energetic and tunable pulses. This thesis work focuses on the study of FOPCPOs along two main axes: the energy scaling of these sources, with here the production of pulses carrying more than 1 µJ at high repetition rate, and the study of the dynamics of these sources. A comparison with a FOPCPA demonstrates the benefits of FOPCPOs, which tend to generate a less noisy pulse train than an equivalent FOPCPA. This work pavs the way for the integration of these sources, enabling them to be used outside of the laboratory, and also for the development of new Raman spectroscopy methods, thnaks to the wide range of regimes that can be obtained from these architectures
Bocoum, Maïmouna. "Harmonic and electron generation from laser-driven plasma mirrors". Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX023/document.
Testo completoThe experimental work presented in this manuscript focuses on the non-linear response of plasma mirrors when driven by a sub-relativistic (~10^18 W/cm^2) ultra-short (~30fs) laser pulse. In particular, we studied the generation of attosecond pulses (1as=10^(-18) s) and electron beams from plasma mirror generated in controlled pump-probe experiment. One first important result exposed in this manuscript is the experimental observation of the anticorrelated emission behavior between high-order harmonics and electron beams with respect to plasma scale length. The second important result is the presentation of the « spatial domain interferometry » (SDI) diagnostic, developed during this PhD to measure the plasma expansion in vacuum. Finally, we will discuss the implementation of phase retrieval algorithms for both spatial and temporal phase reconstructions.From a more general point of view, we replace this PhD in its historical context. We hope to convince the reader that through laser-plasma mirror interaction schemes, we could tomorrow conceive cost-efficient X-UV and energetic electron sources with unprecedented temporal resolutions
Gonzalez, Angarita Aura Inés. "Single shot lensless imaging with coherence and wavefront characterization of harmonic and FEL sources". Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112055/document.
Testo completoLensless imaging techniques have broadened imaging applications to coherent sources in the short wavelength XUV domain, where optical systems to create an image are still not readily available. Furthermore, high harmonic generation sources (HHG) and free electron lasers (FEL) have the advantage of providing short temporal resolutions (atto 10-18s - femto 10-15s), opening the way towards ultrafast time resolved nanoscale imaging. Single shot imaging techniques are then highly important to exploit the shortest temporal resolution that can be reached with XUV sources. Lensless imaging is based on the direct measurement of the electric field diffracted by the sample. The diffraction pattern depends on the object transmittance but also on the source spatial coherence and wavefront. Single shot characterization of those properties thus leads to an improvement of the resolution of the object reconstruction.The results presented in this thesis are divided in two parts; the first one is focused on the characterization of the sources and the second on the development of new multidimensional imaging techniques. We will present different applications of single shot wavefront sensing of XUV sources. The results presented are the product of different experimental campaigns performed during this thesis using HH sources and FEL facilities at LCLS (Stanford) and FERMI (Trieste). Furthermore, a new method for single shot characterization of the spatial coherence that does not require the simultaneous measurement of the intensity distribution is presented. Additionally, we present a new holographic technique to improve the resolution of the object reconstruction when a partially coherent source is used.The second part is dedicated to two new multidimensional imaging techniques developed during the thesis. A new tri-dimensional imaging technique that is single shot, easy to implement and that lowers drastically the X-ray dose received by the sample, is presented. Different experimental setups for the generation of two synchronized XUV sources suitable for this ultrafast single shot 3D stereo imaging technique are presented. In addition, we present a holographic technique to extend imaging using a broadband source towards spectrally resolved single shot imaging and attosecond applications. Finally, we present the general conclusions from the work done during the thesis, together with the perspectives drawn from this work
Monchocé, Sylvain. "Contrôle et métrologie de la génération d'harmoniques sur miroir plasma". Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112344.
Testo completoWhen an ultra intense femtosecond laser with high contrast is focused on a solid target, the laser field at focus is sufficient enough to completely ionize the target surface during the rising edge of the laser pulse and form a plasma. This dense plasma entirely reflects the incident beam in the specular direction: this is a so-called plasma mirror. As the interaction between the laser and the plasma mirror is highly non-linear, it thus leads to the high harmonic generation (HHG) in the reflected beam. In the temporal domain, this harmonic spectrum is associated to a train of attosecond pulses.The aim of my PhD were to experimentally control this HHG and to measure the properties of the harmonics. We first studied the optimization of the harmonic signal, and then the spatial characterization of the harmonic beam in the far-field (harmonic divergence). These characterizations are not only important to develop an intense XUV/attosecond light source, but also to get a better understanding of the laser-matter interaction at very high intensity. We have thus been able to get crucial information of the electrons and ions dynamics of the plasma, showing that the harmonics can also be used as a diagnostic of the laser-plasma interaction.We then developed a new general approach for optically-controlled spatial structuring of overdense plasmas generated at the surface of initially plain solid targets. We demonstrate it experimentally by creating sinusoidal plasma gratings of adjustable spatial periodicity and depth, and study the interaction of these transient structures with an ultraintense laser pulse to establish their usability atrelativistically high intensities. We then show how these gratings can be used as a `spatial ruler' to determine the source size of the high-order harmonic beams roduced at the surface of an overdense plasma. These results open new directions both for the metrology of laser-plasma interactions and the emerging field of ultrahigh intensity plasmonics
Sopena, Moros Arturo. "Etude des effets relativistes en régime d’interaction non-linéaire entre les molécules et les impulsions laser brèves dans les domaines de fréquences XUV et X mous". Thesis, Bordeaux, 2021. http://www.theses.fr/2021BORD0131.
Testo completoThe development of intense XUV sources through free-electron lasers (FELs) and high-order harmonic generation (HHG) in the femtosecond (fs) and sub-fs domains provides a unique tool to investigate non-linear ultrafast laser-matter interaction. In the study of the dynamics of molecular photoionization at ultrashort timescales, the Time-Dependent Schrödinger Equation (TDSE) has been crucial for the interpretation of experimental observations. In this thesis, we present results for ab initio calculations of H2 photoionization with UV/X-ray ultrashort laser pulses. We focus on the study of non-linear processes involving two photons and their role in the coupled electron-nuclear dynamics they induce and their study beyond the dipole approximation (DA). Our theoretical approach is based on a spectral method, which requires determining the quantum states of the field-free molecule. These states are calculated in the Born-Oppenheimer approximation employing a configuration interaction scheme together with multichannel scattering theory to determine for the treatment of continuum states, and the Feshbach partitioning formalism to account for autoionization. We resort to a multipolar expansion of the vector potential in the Coulomb gauge, from which we keep the terms corresponding to DA and retardation effects up to O(1/c), to account for the interaction with radiation. Finally, we make use of perturbative and non-perturbative propagation schemes to obtain transition amplitudes from which we can extract cross-sections, photoelectron spectra (PES), and molecular frame angular distributions (MFPADs).In the first part of the results, we demonstrate the coherent control of ionization and dissociation achieved by filtering the higher harmonics in an attosecond pulse train (APT) in an XUV pump-UV probe scheme. By solving the TDSE in DA including electronic and nuclear motion, we are able to extract nuclear and electronic kinetic energy release (KER) spectra to analyze the main ionization pathways as afunction of the delay between pump and probe. We then discuss the effect of harmonic filtering in manipulating one-photon against two-photon ionization yields, dissociative ionization channels, and asymmetries in the MFPADs. In the second part of the results of the thesis, we report the first calculations of Stimulated Raman Scattering (SRS) and Stimulated Compton Scattering (SCS) in H2 with intense X-ray laser fields. These non-linear phenomena consist in the absorption of a photon and the subsequent stimulated emission of a less energetic one leaving the molecule in an excited state (SRS) or effectively ionizing it (SCS). Theoretically, the inclusion of effects beyond DA becomes mandatory. We begin by investigating the relative role of the dipole (A.P) and non-dipole (A2) interaction terms through a perturbative study of the Raman cross-section. The role of the high energy electronic continuum in the partial cancellation of the dipole contribution is also analyzed. We then present results from SRS and SCS calculations using ultra-short pulses in which we compare the relative contribution of the dipole and non-dipole routes as a function of the photon energy. We assert the validity of perturbation theory by directly comparing SRS calculations with results obtained by solving the TDSE. In SCS, the interference between dipole and non-dipole routesproduces asymmetries in the MFPADs, which we analyze. Special attention is givento the effect of molecular orientation.Finally, we study SCS with two colors, focusing on the effect of the angle between the pulse propagation directions. As seen in atoms, non-dipole effects are enhanced for counter-propagating pulses. We also investigate the effect of color separation in energy
Maroju, Praveen Kumar [Verfasser], e Giuseppe [Akademischer Betreuer] Sansone. "Attosecond pulse shaping at a seeded free-electron laser : : towards attosecond time-resolved experiments at the free-electron lasers". Freiburg : Universität, 2021. http://d-nb.info/1239556527/34.
Testo completoGéneaux, Romain. "Le moment angulaire de la lumière en génération d'harmoniques d'ordre élevé". Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS474/document.
Testo completoAngular momentum is an ubiquitous quantity in all areas of physics. Just like matter, radiation carries angular momentum. It can be decomposed in two parts, namely the spin angular momentum (SAM) and the orbital angular momentum (OAM). Each one of these components has very specific properties and lead to numerous applications using visible and infrared light. In this thesis, we study the behavior of these two types of light angular momentum in a very non-linear process called high harmonic generation (HHG). In this physical process known since 1987, an intense infrared laser is focused into an atomic or molecular gas jet, which in the right intensity regime allows to generate a radiation which has a short wavelength (extreme ultraviolet domain) and is extremely brief (attosecond, 1 as = 10⁻¹⁸ s).We begin by describing theoretically this process, as well as defining in depth the notion of light angular momentum. We then study HHG from an infrared laser carrying OAM. This allows to obtain an unique light source, generating ultrashort light pulses of controlled orbital angular momentum with a wavelength of the order of 10 nm. We then study GHOE from beams carrying MAS. Using a resonance from the generation gas, we manage to transfer this angular momentum to the emitted extreme ultraviolet radiation. This radiation is finally used to measure photoionisation circular dichroisms in chiral molecules, measurements previously restricted to synchrotron sources. This paves the way towards chiroptic time resolved measurement on a femto/attosecond timescale
Wu, Yi. "High flux isolated attosecond pulse generation". Doctoral diss., University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/6038.
Testo completoPh.D.
Doctorate
Optics and Photonics
Optics and Photonics
Optics
Böhle, Frederik. "Near-single-cycle laser for driving relativistic plasma mirrors at kHz repetition rate - development and application". Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLX116/document.
Testo completoVery short light pulses allow us to resolve ultrafast processes in molecules, atoms and condensed matter. This started with the advent of Femtochemistry, for which Ahmed Zewail received the Novel Prize in Chemistry in 1999. Ever since, researcher have been trying to push the temporal resolution further and we have now reached attosecond pulse durations. Their generation, however, remains very challenging and various different generation mechanisms are the topic of heated research around the world.Our group focuses on attosecond pulse generation and ultrashort electron bunch acceleration on solid targets. In particular, this thesis deals with the upgrade of a high intensity, high contrast, kHz, femtosecond laser chain to reach the relativistic interaction regime on solid targets. Few cycle driving laser pulses should allow the generation of intense isolated attosecond pulses. A requirement to perform true attosecond pump-probe exeriments.To achive this, a HCF postcompression scheme has been conceived and implemented to shorten the duration of a traditional laser amplifier. With this a peak intensity of 1TW was achieved with near-single-cycle pulse duration. For controlled experiments, a vacuum beamline was developed and implemented to accurately control the laser and plasma conditions on target.During the second part of this thesis, this laser chain was put in action to drive relativistic harmonic generation on solid targets. It was the first time ever that this has been achieved at 1 kHz. By CEP gating the few-cycle-pulses, single attosecond pulses were generated. This conclusion has been supported by numerical simulations. Additionally a new regime to accelerate electron bunches on soft gradients has been detected
Mairesse, Yann. "Génération et caractérisation d'impulsions attosecondes". Phd thesis, Université Paris Sud - Paris XI, 2005. http://tel.archives-ouvertes.fr/tel-00011620.
Testo completoEn transposant une technique d'interférométrie spectrale couramment utilisée pour la caractérisation complète d'impulsions infrarouges (SPIDER), nous effectuons une caractérisation complète monocoup du profil temporel d'harmoniques individuelles, à l'échelle femtoseconde.
Ensuite, nous étudions expérimentalement la structure attoseconde du rayonnement harmonique, et mettons en évidence une dérive temporelle dans l'émission : les harmoniques les plus faibles sont émises avant les plus élevées. Cette dérive, qui est directement liée à la dynamique électronique microscopique dans le processus de génération, limite la durée d'impulsion que l'on peut obtenir en augmentant la largeur spectrale. Nous présentons les résultats de l'optimisation des conditions de génération afin d'améliorer la synchronisation dans l'émission. Nous montrons également la possibilité de recomprimer les impulsions attosecondes.
Enfin, nous proposons une nouvelle technique pour la caractérisation complète d'impulsions attosecondes arbitraires : FROGCRAB. Elle permettrait une mesure simultanée des caractéristiques femtoseconde et attoseconde du rayonnement, et ainsi une connaissance complète de la source lumineuse attoseconde en vue de son utilisation dans des expériences d'applications.
Kiesewetter, Dietrich. "Dynamics of Near-Threshold, Attosecond Electron Wavepackets in Strong Laser Fields". The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1544447128975478.
Testo completoSchapper, Florian. "Attosecond structure of high-order harmonics". Konstanz Hartung-Gorre, 2010. http://d-nb.info/1000540448/04.
Testo completoRuf, Hartmut. "Dynamique moléculaire par imagerie attoseconde". Phd thesis, Université Sciences et Technologies - Bordeaux I, 2012. http://tel.archives-ouvertes.fr/tel-00803390.
Testo completoZair, Amelle. "Production et caractérisation d'impulsions attosecondes VUV par génération d'harmoniques d'ordre élevé". Phd thesis, Université Sciences et Technologies - Bordeaux I, 2006. http://tel.archives-ouvertes.fr/tel-00111726.
Testo completoAu CELIA, nous avons implémenté une technique de post-compression qui nous a permi de comprimer nos impulsions laser IR de 40 fs à 9 fs (1fs=10-15s). Ces impulsions sont ensuite utilisée pour confiner la HHG. Étant donné que le processus de HHG est efficace uniquement si les impulsions IR génératrices sont polarisées linéairement, nous avons créé une porte dans le profil temporel de nos impulsions sub-10fs où la polarisation est linéaire pendant une durée inferieure à la durée de l'impulsion IR génératrice. Ceci nous permet de confiner la HHG en dessous d'un demi-cycle optique IR. Cette technique de porte d'ellipticité, complètement caractérisée dans cette thèse, nous a permis de confiner la HHG jusqu'à l'émission d'une à deux impulsions attosecondes. Afin de caractériser le profil temporel du train d'impulsions attosecondes, nous avons également implémenté un interféromètre à deux couleurs qui nous a permit de mesurer la phase harmonique et de reconstruire nos trains d'impulsions attosecondes.
Quintard, Ludovic. "Caractérisation et contrôle des profils spatiaux, spectraux et temporels de faisceaux XUV obtenus par génération d’harmoniques d’ordres élevés dans des gaz". Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0641/document.
Testo completoWe present our work on the control of high order harmonic generation in gases.We first show how, by generating the harmonics outside the focus of the IR beam,it is possible to control the spatial phase of the harmonics in the generating mediumallowing to obtain a divergent, collimated or convergent wavefront. With this methodwe show that it is possible to focus the harmonics up to six Rayleigh length after thefocal point of the IR beam. Then we study XUV harmonic beams presenting structuredspacio-spectral distributions in the far field. In this study, we observe the influence ofthe diameter of an iris positioned before the focusing of the IR. In a third step we studymethods for controlling the harmonic spectrum. First, we finely control the harmonicscentral wavelength by modifiying the spectral content of the IR by adding two delayedIR pulses. Then we used the collective effects of the high order harmonic generationin order to foster a specific harmonic or a group of harmonics in the far field. Finally,we present a method for characterizing the duration of attosecond pulses in the timedomain. This method, called ionization ladder, uses ionization as a probe to measurepulse duration of up to hundreds of attosecond
Viau-Trudel, Jérémy. "Dynamique multi-électronique de H2 en champ laser intense et attoseconde". Thesis, Université Laval, 2012. http://www.theses.ulaval.ca/2012/28960/28960.pdf.
Testo completoViau-Trudel, Jérémy. "Dynamique multi-électronique de H₂ en champ laser intense et attoseconde". Master's thesis, Université Laval, 2012. http://hdl.handle.net/20.500.11794/23382.
Testo completoPeters, Michel. "Dynamique des électrons corrélés en champ laser intense". Thesis, Université Laval, 2012. http://www.theses.ulaval.ca/2012/29086/29086.pdf.
Testo completoChopineau, Ludovic. "Physique attoseconde relativiste sur miroirs plasmas". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS132/document.
Testo completoWhen an ultra-intense femtosecond laser beam [Iʟ > 10¹⁶ W/cm²] is focused on a solid target, the surface becomes completely ionized during the first optical cycles of the laser pulse. Due to their solid-like density and to their limited expansion into the vacuum such plasmas specularly reflect these pulses, just like ordinary mirrors do for low intensity. These plasmas are now used in many scientific applications like particle acceleration by laser light as well as high-order harmonic generation, associated to a train of attosecond pulses in the time domain. Nevertheless, to favor these emissions of light or particle, the energy transfert between the incident field and the dense plasma is crucial. The aim of this thesis is to better understand these interactions through the characterization of high-order harmonics and relativistic electron beams generated on plasma mirrors. We reported in this manuscript the first detailed experimental and numerical study of the coupling mechanisms involved between an ultra-intense laser light [Iʟ > 10¹⁸ W/cm²] and a dense plasma, and more specifically as a function of the gradient scale length Lg. These results enabled to identify two different regimes, clarifying some physical issues. Furthermore, beyond these fondamental aspects, the control of these sources is essential, particularly for futures pump-probe experiments or new spectroscopies. For that, several approaches have been studied to temporally and spatially shape these ultra-short light pulses, thus opening up new perspectives for these sources. We demonstrate in particular the generation of intense XUV vortex beam either by spatially shaping the incident IR field or the dense plasma created at the target surface as well as controlling the electron dynamics on the attosecond time scale with relativistic two-color waveforms. Finally, an innovative method based on in-situ ptychographic measurements has been developed to simultaneously characterize in time and space these ultrashort XUV light pulses, constituting one of the major challenges of the community
Li, Duo Ph D. Massachusetts Institute of Technology. "Attosecond timing jitter modelocked lasers and ultralow phase noise photonic microwave oscillators". Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/87930.
Testo completoCataloged from PDF version of thesis.
Includes bibliographical references (pages 111-119).
Photonic microwave oscillator based on optical frequency comb and ultrastable optical reference cavity represents the state-of-the-art solution to generate X-band microwaves of ultralow phase noise. Such high-quality microwave source enables a range of applications in which frequency stability and timing accuracy are essential to performance. Wide use of this technology, however, requires compact system architecture, low-term stability and low energy consumption, which drive the needs to develop high repetition-rate femtosecond lasers alternative to Ti:sapphire technology, and to explore a feasible means to achieve integrated photonic microwave oscillators. Ultrafast Cr:LiSAF lasers can be directly pumped with low-cost red laser diodes, and the electrical-to-optical conversion efficiency is as high as 10%. High repetition-rate femtosecond Cr:LiSAF lasers are developed with the help of semiconductor saturable absorber technology, efficient dispersion compensation mirror design algorithms, and heat management of the saturable absorber. The I-GHz Cr:LiSAF oscillator generates 55-fs pulses with 110 pJ pulse energy, which represents almost two orders of magnitude improvement in the output peak power over previous results. Timing jitter of 1 00-MHz Cr:LiSAF lasers is measured with a single-crystal balanced optical cross-correlator to be -30 as from 10 kHz to 50 MHz. Pump intensity noise coupled into phase noise through the self-steepening effect proves to be the major noise source. The most recent advance in silicon photonics and wafer-scale three-dimensional integration technology illuminates a pathway toward on-chip photonic microwave oscillators. Phase noise model of the proposed Erbium Silicon Photonics Integrated OscillatoR (ESPIOR) suggests that it is possible to achieve comparable noise performance with the Ti:sapphire-based system, without the need of carrier-envelope-offset frequency detection. A demonstration using fiber-optic components further indicates that it is practicable to realize optical frequency division and microwave readout in the proposed architecture. With the advancement of heterogeneous electronic-photonic integration, it would pave the way for an ultralow-noise microwave source fully integrated in a hybrid photonic-electronic chip on a silicon substrate.
by Duo Li.
Ph. D.
Frank, Felix. "Generation and application of ultrashort laser pulses in attosecond science". Thesis, Imperial College London, 2011. http://hdl.handle.net/10044/1/7025.
Testo completoZaïr, Amelle. "Production et caractérisation d'impulsions attosecondes VUV par génération d'harmoniques d'ordre élevé". Bordeaux 1, 2006. http://www.theses.fr/2006BOR13192.
Testo completoChirla, Razvan Cristian. "Attosecond Pulse Generation and Characterization". The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1313429461.
Testo completoVincenti, Henri Paul. "Génération d'impulsions attosecondes sur miroir plasma relativiste". Phd thesis, Ecole Polytechnique X, 2012. http://pastel.archives-ouvertes.fr/pastel-00787281.
Testo completoBourassin-Bouchet, Charles. "Optiques pour les impulsions attosecondes". Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00657772.
Testo completoChini, Michael. "Characterization and Application of Isolated Attosecond Pulses". Doctoral diss., University of Central Florida, 2012. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5163.
Testo completoPh.D.
Doctorate
Physics
Sciences
Physics
Procino, I. "Laser induced molecular axis alignment : measurement and applications in attosecond science". Thesis, University College London (University of London), 2011. http://discovery.ucl.ac.uk/1333960/.
Testo completoPlatzer, Dominique. "Spectroscopie de photoionisation d’atomes et molécules en phase gazeuse aux échelles de temps femtoseconde et attoseconde". Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASP088.
Testo completoIn this work are studied atomic and molecular systems in the gas phase using time-resolved electron pump-probe spectroscopy on the femtosecond (1 fs = 10⁻¹⁵ s) and attosecond (1 as = 10⁻¹⁸ s) timescales on the SE1 beamline of the ATTOLab platform. First, the femtosecond dissociation of methyl iodide following the absorption of one UV photon was investigated by Auger spectroscopy and multiphoton ionization (ATI-IR). In the latter case, a relaxation dynamic with 75 fs caracteristic time was evidenced for the part of the nuclear wavepacket confined to small internuclear distances. Second, the attosecond ionization dynamics of argon were studied over a large spectral range including Cooper minima. This study required: (i) a coherent light source in the extreme ultra-violet (photon energy in the 10-100 eV range) based on high harmonic generation and producing attosecond pulse trains, and (ii) an electron interferometry technique giving access to the spectral phase of the photoemitted wavepackets. The latter are used to extract the attosecond photoemission time delays that can be interpreted as the time necessary for the electron to escape from the atomic potential. Strong variations of the time delays were observed between the 3s and 3p valence shells, revealing important electronic correlation effects, like the presence of shake-up ionization channels. To be able to reconstruct the complete movie of the photoionization process, one needs to add spatial information to the spectral/temporal measurements. Two-photon resonant ionization of helium through the 1s3p state was then studied, using a velocity-map imaging (VMI) spectrometer instead of the angularly-integrating magnetic-bottle electron spectrometer used in the previous studies. An extremely fast spectral phase shift was measured, quite homogeneously up to 45° emission angles, thus giving a more complete view of the process. Finally, a new VMI spectrometer was designed, built and installed on the beamline. Its main specifications (energy range and resolution) were optimized for attosecond spectroscopy, mainly through the development of a new electrostatic lens
Ghimire, Shambhu. "Study on generation of attosecond pulse with polarization gating". Diss., Manhattan, Kan. : Kansas State University, 2007. http://hdl.handle.net/2097/283.
Testo completoCheng, Yan. "Towards intense single attosecond pulse generation from a 400 NM driving laser". Thesis, Kansas State University, 2011. http://hdl.handle.net/2097/13185.
Testo completoDepartment of Physics
Brian Washburn
Zenghu Chang
Attosecond pulse generation is a powerful tool to study electron dynamics in atoms and molecules. However, application of attosecond pulses is limited by the low photon flux of attosecond sources. Theoretical models predict that the harmonic efficiency scales as λ[lambda]-6 in the plateau region of the HHG spectrum, where λ [lambda] is the wavelength of the driving laser. This indicates the possibility of generating more intense attosecond pulses using short wavelength driving lasers. The purpose of this work is to find a method to generate intense single attosecond pulses using a 400 nm driving laser. In our experiments, 400 nm femtosecond laser pulses are used to generate high harmonics. First, the dependence of the high harmonic generation yield on the ellipticity of 400 nm driving laser pulse is studied experimentally, and it is compared with that of 800 nm driving lasers. A semi-classical theory is developed to explain the ellipticity dependence where the theoretical calculations match experiment results very well. Next, 400 nm short pulses (sub-10 fs) are produced with a hollow core fiber and chirped mirrors. Finally, we propose a scheme to extract single attosecond pulses with the Generalized Double Optical Gating (GDOG) method.
Zahid, Amna. "Aspects of Attosecond Pulse Generation Through High-Harmonic Generation". Thesis, Griffith University, 2018. http://hdl.handle.net/10072/376728.
Testo completoThesis (Masters)
Master of Philosophy (MPhil)
School of Environment and Sc
Science, Environment, Engineering and Technology
Full Text
Weikum, Maria Katharina. "Generation, acceleration and measurement of attosecond electron beams from laser-plasma accelerators". Thesis, University of Strathclyde, 2017. http://digitool.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=29839.
Testo completoDiveki, Zsolt. "Generation and Application of Attosecond Pulses". Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00722473.
Testo completoHort, Ondřej. "High harmonic generation with high energy femtosecond pulses". Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0097/document.
Testo completoWe present our work on high harmonic generation with TW femtosecond pulses. We performed HHG with high energy femtosecond pulses and characterize the generated XUV emission spatially and spectrally at the single-shot basis and we observed many structures in spatially resolved XUV spectra in the far field. Those structures are very robust and reproducible and have been observed in many different gases and generation geometries. Without spatial and spectral characterization on the single-shot basis the structures are not visible. We developed simple simulations to identify those structures and we observed similar structures as experimentally. We identified them as a result of spatial coherence of the XUV source and the diffraction to the far field. In the near field, the harmonic amplitude and phase are spatially and temporally dependent and their profiles are strongly modulated. Such modulated profiles diffract to structured spatially resolved spectra in the far field. We observed that propagation of the XUV in the generating medium has little influence on the structures. We demonstrate spatial shaping of the driving pulses via adaptive optics and their advantage for HHG. An adaptive optics allows us to have the driving beam of regular spatial profile and phase even out of focus. Such a beam is used for HHG with a large diameter driving beam and control of the XUV beam is demonstrated. We developed a high energy TW post-compression technique and we obtained pulses of 10 fs and 10 mJ in a quasi-Gaussian spatial profile. The technique is based on ionization-inducedself-phase-modulation and is compatible with high energy TW level pulses. We performed HHG with such TW pulses and obtained XUV quasi-continuum spectra with spectral and spatial structures. We performed simple simulations and SFAsimulations and we observed similar structures even without considering the XUV propagation in the medium
Shiner, Andrew. "Probing Collective Multi-electron Effects with Few Cycle Laser Pulses". Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/23942.
Testo completoQuere, Fabien. "Impulsions attosecondes de lumière : caractérisation temporelle et sources de deuxième génération". Habilitation à diriger des recherches, Université Paris Sud - Paris XI, 2010. http://tel.archives-ouvertes.fr/tel-00455370.
Testo completoLabeye, Marie. "Molecules interacting with short and intense laser pulses : simulations of correlated ultrafast dynamics". Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS193/document.
Testo completoIn this thesis we study different aspects of the ultrafast dynamics of atoms and molecules triggered by intense and short infrared laser pulses. Highly non-linear processes like tunnel ionization, high order harmonic generation and above threshold ionization are investigated. Two different and complementary approaches are used. On the one hand we construct approximate analytical models to get physical insight on these processes. On the other hand, these models are supported by the results of accurate numerical simulations that explicitly solve the time dependent Schrödinger equation for simple benchmark models in reduced dimensions. A numerical method based on time dependent configuration interaction is investigated to describe larger and more more complex systems with several electrons
Kallala, Haithem. "Massively parallel algorithms for realistic PIC simulations of ultra high intensity laser-plasma interaction, application to attosecond pulses separation of Doppler harmonics". Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASS052.
Testo completoThe complexity of the physical mechanisms involved in ultra-high intensity laser-plasma interaction requires the use of particularly heavy PIC simulations. At the heart of these computational codes, high-order pseudo-spectral Maxwell solvers have many advantages in terms of numerical accuracy. This numerical approach comes however with an expensive computational cost. Indeed, existing parallelization methods for pseudo-spectral solvers are only scalable to few tens of thousands of cores, or induce an important memory footprint, which also hinders the scaling of the method at large scales. In this thesis, we developed a novel, arbitrarily scalable, parallelization strategy for pseudo-spectral Maxwell's equations solvers which combines the advantages of existing parallelization techniques. This method proved to be more scalable than previously proposed approaches, while ensuring a significant drop in the total memory use.By capitalizing on this computational work, we conducted an extensive numerical and theoretical study in the field of high order harmonics generation on solid targets. In this context, when an ultra-intense (I>10¹⁶W.cm⁻²) ultra-short (few tens of femtoseconds) laser pulse irradiates a solid target, a reflective overdense plasma mirror is formed at the target-vacuum interface. The subsequent laser pulse non linear reflection is accompanied with the emission of coherent high order laser harmonics, in the form of attosecond X-UV light pulses (1 attosecond = 10⁻¹⁸s). For relativistic laser intensities (I>10¹⁹ W.cm⁻²), the plasma surface is curved under the laser radiation pressure. And the plasma mirror acts as a focusing optics for the radiated harmonic beam. In this thesis, we investigated feasible ways for producing isolated attosecond light pulses from relativistic plasma-mirror harmonics, with the so called attosecond lighthouse effect. This effect relies introducing a wavefront rotation on the driving laser pulse in order to send attosecond pulses emitted during different laser optical cycles along different directions. In the case of high order harmonics generated in the relativistic regime, the plasma mirror curvature significantly increases the attosecond pulses divergence and prevents their separation with the attosecond lighthouse scheme. For this matter, we developed two harmonic divergence reduction techniques, based on tailoring the laser pulse phase or amplitude profiles in order to significantly inhibit the plasma mirror focusing effect and allow for a clear separation of attosecond light pulses by reducing the harmonic beam divergence. Furthermore, we developed an analytical model to predict optimal interaction conditions favoring attosecond pulses separation. This model was fully validated with 2D and 3D PIC simulations over a broad range of laser and plasma parameters. In the end, we show that under realistic laser and plasma conditions, it is possible to produce isolated attosecond pulses from Doppler harmonics
Malvache, Arnaud. "Optique non-linéaire à haute intensité : Compression d'impulsions laser Interaction laser-plasma". Phd thesis, Palaiseau, Ecole polytechnique, 2011. https://theses.hal.science/index.php?halsid=uofsba7dj5fa0catc3i9mh00v0&view_this_doc=pastel-00677295&version=1.
Testo completoThis mainly theoretical PhD thesis has been done in the framework of high-order harmonics generation on solid targets using 1mJ ultrashort laser pulses (2 optical cycles) at high repetition rate (1kHz), CEP-stabilized. On the one hand, in order to fully use the laser source, I developed a simulation code of hollow-core fiber propagation. The results of this code, associated with an experimental study, allowed to push the energy limitation of this compression technique. On the other hand, I used PIC simulation and I developed a simulation model of CWE in order to quantify its dependence to the laser and plasma parameters. This work first helped to explain the CWE spectrum changes with pulse CEP. Second, by comparing theoretical results with an experimental parametric study, it provided information about the plasma conditions such as density gradient and electronic temperature
Clergerie, Alex. "Modélisation de spectroscopie moléculaire par paquets d'électrons attosecondes". Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0243.
Testo completoOn the basis of previous numerical simulations for atomic targets, we develop a model to describe high-orderharmonic generation in molecules subjected to short and intense laser pulses. In this process, anelectron wavepacket launched through ionization is driven by the field and comes back to the molecular ioniccore that it probes on the attosecond timescale. Our model, to which we refer to as molCTMC-QUEST,describes ionization and electron propagation into the continuum classically, in terms of electron trajectories, while photorecombination is described quantum mechanically. We present the methodology that wehave built, and we later apply it to harmonic generation in water molecules. After simulations in which themolecules remain frozen in their equilibrium geometry throughout the interaction, we explicitly take intoaccount nuclear vibration between ionization and recombination. molCTMC-QUEST provides a quantitativedescription of the generation process combined with an intuitive picture of the interaction inherent in theclassical description of electron dynamics
Schweinberger, Hans Wolfgang. "A laser source for the generation of intense attosecond pulses and its first applications". Diss., Ludwig-Maximilians-Universität München, 2014. http://nbn-resolving.de/urn:nbn:de:bvb:19-176078.
Testo completoDie beständige Entwicklung und Verbesserung der verfügbaren Laserquellen hat die Anzahl ihrer Anwendungen stetig wachsen lassen und darüber hinaus insbesondere Hochpräzissionsmessungen in vielen Bereichen dramatisch verbessert. Das Ziel dieser Doktorarbeit ist die Verbesserung der gängigsten Laserquelle zur Erzeugung von isolierten extrem-ultravioletten (XUV) Pulsen, welche im letzten Jahrzehnt das Studium von Elektronen-Dynamiken im sub-femtosekunden Bereich (1 fs = 10^-15 s) ermöglicht hat und zu vielerlei Erkenntnissen der Elektronendynamik in Atomen, Molekülen und Festkörpern beigetragen hat. Mittels der Verwendung einer zusätzlichen Verstärkerstufe, zu dem üblichen einstu- figen Verstärkersystem mit gestreckten Laserpulsen, gelang es die auf weniger als 5 fs komprimierte Laserpulsenergie auf 1,5mJ zu verdreifachen. Dafür wurden zwei unterschiedliche Konzepte für die Kompression der verstärkten Pulse miteinander verglichen. Mit dieser erhöhten Pulsenergie ist es möglich sowohl den Photonen uss in den erzeugten, isolierten Attosekundenpulsen als auch deren Photonenenergie zu erhöhen. Betrieben bei vier Kilohertz Wiederholrate, erlaubt das Lasersystem die Durchführung integrativer Messung mit zwei-Zyklen-Laserpulsen mit deutlich höherer Geschwindigkeit als die meisten anderen Laserquellen in diesem Energiebereich. Diese Laserpulse werden zur Erzeugung höherer Harmonischer eingesetzt und wurden mittels Attosekundenstreakingspektroskopie (Attosekunden-Schlierenspektroskopie) charakterisiert wobei zugleich die hervorragende Stabilität und die Qualität der XUV-pulse nachgewiesen wurde. Die so erzeugten XUV-Pulse wurden zur Durchführung erster Experimente herangezogen, zum einen zur breitbandigen, zeitlichen Charakterisierung der Photoemission der "Riesenresonanz" der Xenon{4d Schale bei 100 eV und zum anderen bei der Untersuchung der induzierten nichtlinearen Propagation in Quarzglas. Deren Ein- uss auf die elektrischen Wellenform der ultrakurzen Laserpulse im sichtbaren, nah-infraroten Spektralbereich wurde mittels Attosekunden-Streaking charakterisiert. Die höheren Pulsenergien des Lasersystems werden sich als besonders nützlich erweisen sobald weitere nichtlineare Effekte Teil des Anregungs-Abfrage-Aufbaus sind, wie z.B. bei der Erzeugung von ultrakurzen UV-Pulsen zur Anregung und der XUVPulse zur zeitlichen Abfrage, da die Intensität beider Pulse mit der Pulsenergie des fundamentalen Pulses ansteigt.