Letteratura scientifica selezionata sul tema "Landing on a mobile target"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Landing on a mobile target".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Landing on a mobile target"
Kwak, Junyoung, Sangwoong Lee, Junsoo Baek e Baeksuk Chu. "Autonomous UAV Target Tracking and Safe Landing on a Leveling Mobile Platform". International Journal of Precision Engineering and Manufacturing 23, n. 3 (31 gennaio 2022): 305–17. http://dx.doi.org/10.1007/s12541-021-00617-8.
Testo completoWang, Zian, Zheng Gong, Yang Yang, Yongzhen Liu, Pengcheng Cai e Chengxi Zhang. "Guidance Law for Autonomous Takeoff and Landing of Unmanned Helicopter on Mobile Platform Based on Asymmetric Tracking Differentiator". Mathematics 11, n. 1 (24 dicembre 2022): 66. http://dx.doi.org/10.3390/math11010066.
Testo completoSergeev, A. A., A. B. Filimonov e N. B. Filimonov. "Control of Autonomous Landing of UAV of Airplane-Type on the Static and Dynamic Sites with Using of "Flexible" Kinematic Trajectories". Mekhatronika, Avtomatizatsiya, Upravlenie 22, n. 3 (2 marzo 2021): 156–67. http://dx.doi.org/10.17587/mau.22.156-167.
Testo completoAvilés-Viñas, Jaime, Roberto Carrasco-Alvarez, Javier Vázquez-Castillo, Jaime Ortegón-Aguilar, Johan J. Estrada-López, Daniel D. Jensen, Ricardo Peón-Escalante e Alejandro Castillo-Atoche. "An Accurate UAV Ground Landing Station System Based on BLE-RSSI and Maximum Likelihood Target Position Estimation". Applied Sciences 12, n. 13 (30 giugno 2022): 6618. http://dx.doi.org/10.3390/app12136618.
Testo completoYue, ZHU, HE Shuai, DUAN Xuechao e XU Ziqi. "UAV Landing Aid Hexapod Robot based on ArUco Marker and Sparse Optical Flow". Journal of Physics: Conference Series 2281, n. 1 (1 giugno 2022): 012002. http://dx.doi.org/10.1088/1742-6596/2281/1/012002.
Testo completoZhu, Jiangcheng, Jun Zhu e Chao Xu. "A simultaneous trajectory generation method for quadcopter intercepting ground mobile vehicle". International Journal of Advanced Robotic Systems 14, n. 4 (1 luglio 2017): 172988141771770. http://dx.doi.org/10.1177/1729881417717702.
Testo completoIbarra Jiménez, Efraín, e Manuel Jiménez-Lizárraga. "Robust tracking-surveillance and landing over a mobile target by quasi-integral-sliding mode and Hopf bifurcation". Journal of the Franklin Institute 359, n. 5 (marzo 2022): 2120–55. http://dx.doi.org/10.1016/j.jfranklin.2021.12.017.
Testo completoKownacki, Cezary. "Artificial Potential Field Based Trajectory Tracking for Quadcopter UAV Moving Targets". Sensors 24, n. 4 (19 febbraio 2024): 1343. http://dx.doi.org/10.3390/s24041343.
Testo completoChoi, Sally H. J., Gary K. Yang, Keith Baxter e Joel Gagnon. "Evaluation of Aortic Zone 2 Proximal Landing Accuracy During Thoracic Endovascular Aortic Repair Following Carotid-Subclavian Revascularization". Vascular and Endovascular Surgery 55, n. 4 (4 febbraio 2021): 355–60. http://dx.doi.org/10.1177/1538574421989851.
Testo completoAccomando, Filippo, Andrea Vitale, Antonello Bonfante, Maurizio Buonanno e Giovanni Florio. "Performance of Two Different Flight Configurations for Drone-Borne Magnetic Data". Sensors 21, n. 17 (26 agosto 2021): 5736. http://dx.doi.org/10.3390/s21175736.
Testo completoTesi sul tema "Landing on a mobile target"
Alatorre, Sevilla Armando. "Landing of a fixed-wing unmanned aerial vehicle in a limited area". Electronic Thesis or Diss., Compiègne, 2024. http://www.theses.fr/2024COMP2801.
Testo completoThe development of this thesis consists of designing some control strategies that allow a fixedwing drone with classical configuration to perform a safe landing in a limited area. The main challenge is to reduce the aircraft’s airspeed avoiding stall conditions. The developed control strategies are focused on two approaches: the first approach consists of the designing airspeed reduction maneuvers for a fixed-wing vehicle to be captured by a recovery system and for a safe landing at a desired coordinate. The next approach is focused on landing a fixed-wing drone on a moving ground vehicle. A dynamic landing trajectory was designed to lead a fixedwing vehicle to the position of a ground vehicle, reaching its position in a defined distance. Moreover, this trajectory was used in a cooperative control design. The control strategy consists of the synchronization of both vehicles to reach the same position at a desired distance. The aerial vehicle tracks the dynamic landing trajectory, and the ground vehicle controls its speed. In addition, we will propose a control architecture with a different focus, where the ground vehicle performs the tracking task of the aerial vehicle’s position in order to be captured. And, the drone’s task is to track a descending flight until the top of the ground vehicle. However, considering the speed difference between both vehicles. Therefore, we propose a new control architecture defining that the aircraft performs an airspeed reduction strategy before beginning its landing stage. The aircraft will navigate to a minimum airspeed, thus, allowing the ground vehicle to reach the fixed-wing drone’s position by increasing its speed. The control laws of each strategy were determined by developing the Lyapunov stability analysis, thus, the stability is guaranteed in each flight stage. Finally, the control strategies were implemented on prototypes allowing us to validate their performance and obtain satisfactory results for safe landing of a fixed-wing drone with classical configuration
Hansén, Rasmus, Axel Ringh, Victoria Svedberg e Nils Landin. "Autonomus Helicopter Landing on a Mobile Platform". Thesis, KTH, Optimeringslära och systemteori, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-105551.
Testo completoDen här uppsatsen undersöker problemet att autonomt landa en modellhelikopter på en mobil plattform genom att använda olika regulatorer för attityd- och translationsdynamiken. Den matematiska beskrivningen av helikoptern utgår från dynamiken för en stel kropp med 6 frihetsgrader. Eftersom landning kan genomföras med låga hastigheter och små vinklar används en linjär modell för att göra problemet mer lätthanterligt. Insignalerna till systemet är kraften från stjärtrotorn och lutningsvinklarna av huvudrotorns Tip-Path-Plane. En kaskadregulator används för att styra translationssystemet med eulervinklarna och kraften från huvudrotorn, som insignaler. Regulatorn testas i en MATLAB-simulering mot en glatt referensbana med godkända resultat. För landingsproceduren används en banplaneringsstrategi som bygger på linjär prediktiv reglering (PR). Kaskadregulatorn används sedan för att följa translationsreferenserna, vilka blir valda så att även attitydsystemet anpassas efter plattformens attityd i landningsögonblicket.
Gising, Andreas. "MALLS - Mobile Automatic Launch and Landing Station for VTOL UAVs". Thesis, Linköping University, Department of Electrical Engineering, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-15980.
Testo completoThe market for vertical takeoff and landing unmanned aerial vehicles, VTOL UAVs, is growing rapidly. To reciprocate the demand of VTOL UAVs in offshore applications, CybAero has developed a novel concept for landing on moving objects called MALLS, Mobile Automatic Launch and Landing Station. MALLS can tilt its helipad and is supposed to align to either the horizontal plane with an operator adjusted offset or to the helicopter skids. Doing so, eliminates the gyroscopic forces otherwise induced in the rotordisc as the helicopter is forced to change attitude when the skids align to the ground during landing or when standing on a jolting boat with the rotor spun up. This master’s thesis project is an attempt to get the concept of MALLS closer to a quarter scale implementation. The main focus lies on the development of the measurement methods for achieving the references needed by MALLS, the hori- zontal plane and the plane of the helicopter skids. The control of MALLS is also discussed. The measurement methods developed have been proved by tested implementations or simulations. The theories behind them contain among other things signal filtering, Kalman filtering, sensor fusion and search algorithms. The project have led to that the MALLS prototype can align its helipad to the horizontal plane and that a method for measuring the relative attitude between the helipad and the helicopter skids have been developed. Also suggestions for future improvements are presented.
Peluchon, Mathias. "Autonomous landing of multicopters on mobile platforms : Design of an autonomous landing solution for multicopters on mobile platforms, based on a ultrasonic local positionning technology". Thesis, KTH, Fordonsdynamik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-261186.
Testo completoDet här arbete studerar hur man kan använda 3D positionering med ultraljud för att landa multicenter. Målet är att utveckla en lösning för autonom landning av olika system på mobila plattformar, i synnerhet på båtdäck, med en teknik som utvecklats ett fransk företag, Internest. Först, lägesalgoritmnerna ska förbättras så att de kan ge exakt positionsmätningar i rörliga referensramar. Sedan gjordes en första implementering av lägesalgoritmen med PID som studerades och testades. Till sist, implementerades och och förbättrades algoritmen med banplannering, feedforward reglering, och en referensmodell. Allt detta arbete är genomfört i ett industriellt sammanhang, med målet att utveckla enkla men effektiva lösningar som kan användas i olika applikationer, med olika system.
Williams, Christopher G. "Physics-based modeling and assessment of mobile landing platform system design". Thesis, Monterey, Calif. : Naval Postgraduate School, 2008. http://edocs.nps.edu/npspubs/scholarly/theses/2008/Sept/08Sep%5FWilliams.pdf.
Testo completoThesis Advisor(s): Papoulias, Fotis ; Gordis, Joshua. "September 2008." Description based on title screen as viewed on November 4, 2008 Includes bibliographical references (p. 73-74). Also available in print.
Stenström, Jonathan. "Simultaneous Trajectory Optimization and Target Estimation Using RSS Measurements to Land a UAV". Thesis, Linköpings universitet, Reglerteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-131117.
Testo completoLizarraga, Mariano I. "Autonomous landing system for a UAV". Thesis, Monterey California. Naval Postgraduate School, 2004. http://hdl.handle.net/10945/1655.
Testo completoThis thesis is part of an ongoing research conducted at the Naval Postgraduate School to achieve the autonomous shipboard landing of Unmanned Aerial Vehicles (UAV). Two main problems are addressed in this thesis. The first is to establish communication between the UAV's ground station and the Autonomous Landing Flight Control Computer effectively. The second addresses the design and implementation of an autonomous landing controller using classical control techniques. Device drivers for the sensors and the communications protocol were developed in ANSI C. The overall system was implemented in a PC104 computer running a real-time operating system developed by The Mathworks, Inc. Computer and hardware in the loop (HIL) simulation, as well as ground test results show the feasibility of the algorithm proposed here. Flight tests are scheduled to be performed in the near future.
Lieutenant Junior Grade, Mexican Navy
Zhao, Honglin, Xianming Zhao e Tingxian Zhou. "Remote Control Multiple Mobile Target System with CDMA". International Foundation for Telemetering, 1996. http://hdl.handle.net/10150/611458.
Testo completoAt present, multiple mobile targets will be remote controlled in many remote control and telemetry system, in which multiple access technology will be applied. This paper proposes a communication scheme to remote control multiple mobile targets using Coded-Division Multiple Access(CDMA) technique. It's feasibility, advantage and shortcoming are analyzed. Moreover, the key techniques of Direct-Sequence Spread Spectrum(DS/SS) system, i.e. the correlation detection and delay lock-on techniques, are studied and stimulated on the experimental model. The results of theoretical analysis show that the CDMA system has the peculiar advantage over the conventional multiple access system, such as FDMA and TDMA.
Barber, D. Blake. "Accurate target geolocation and vision-based landing with application to search and engage missions for miniature air vehicles /". Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd1704.pdf.
Testo completoArragattu, Prashanth Kumar. "ISCSI performance for mobile appliances using intermediate target storage". Thesis, Wichita State University, 2009. http://hdl.handle.net/10057/2433.
Testo completoThesis (M.S.)--Wichita State University, College of Engineering, Dept. of Electrical and Computer Engineering
Libri sul tema "Landing on a mobile target"
Omode, Akemi. Mobile suit gundam wing: Blind target. San Francisco: Viz Communications, 2001.
Cerca il testo completoManzitti, Edward T. Mobile marketing: Consumer perspectives. New York: Direct Marketing Association, 2008.
Cerca il testo completoAssociation, United States LST, a cura di. Large slow target: A history of the LST. Toledo, Ohio: U.S. LST Association, 1986.
Cerca il testo completoBen, Salter, a cura di. Mobile marketing: Achieving competitive advantage through wireless technology. Amsterdam: Elsevier BH, 2006.
Cerca il testo completoKuznecov, Sergey, e Konstantin Rogozin. All of physics on your palm. Interactive reference. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/501810.
Testo completoNew Mobile Report Gundam Wing "Blind Target". Gakken, 1999.
Cerca il testo completoMichael, Alex, e Ben Salter. Mobile Marketing. Taylor & Francis Group, 2006.
Cerca il testo completoMichael, Alex, e Ben Salter. Mobile Marketing. Taylor & Francis Group, 2006.
Cerca il testo completoMichael, Alex, e Ben Salter. Mobile Marketing. Taylor & Francis Group, 2006.
Cerca il testo completoMichael, Alex, e Ben Salter. Mobile Marketing. Taylor & Francis Group, 2006.
Cerca il testo completoCapitoli di libri sul tema "Landing on a mobile target"
Voos, Holger. "Nonlinear Landing Control for Quadrotor UAVs". In Autonome Mobile Systeme 2009, 113–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-10284-4_15.
Testo completoYang, Shuang-Hua. "Mobile Target Localization and Tracking". In Signals and Communication Technology, 217–34. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5505-8_10.
Testo completoRibeiro, Rita A., Tiago C. Pais e Luis F. Simões. "Benefits of Full-Reinforcement Operators for Spacecraft Target Landing". In Preferences and Decisions, 353–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15976-3_21.
Testo completoShareef, Mahmud Akhter, Yogesh K. Dwivedi e Vinod Kumar. "Target Marketing and Development of the Communication Channel". In Mobile Marketing Channel, 103–19. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31287-3_6.
Testo completoGupta, Ashima, Chao Gui e Prasant Mohapatra. "Mobile Target Tracking Using Sensor Networks". In Mobile, Wireless, and Sensor Networks, 173–96. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/0471755591.ch7.
Testo completoYang, Qing, Lu Su, Quanlong Li e Xiaofei Xu. "Cooperative Target Localization Method for Heterogeneous Sensor Networks". In Networking and Mobile Computing, 13–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11534310_4.
Testo completoBazán, Eric, Petr Dokládal e Eva Dokládalová. "Unsupervised Perception Model for UAVs Landing Target Detection and Recognition". In Advanced Concepts for Intelligent Vision Systems, 233–44. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01449-0_20.
Testo completoEngels, Florian. "Target Shape Estimation Using an Automotive Radar". In Smart Mobile In-Vehicle Systems, 271–90. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-9120-0_16.
Testo completoShi, Jinyu, e Weijia Jia. "Real-Time Target Tracking Through Mobile Crowdsensing". In Lecture Notes in Computer Science, 3–18. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68786-5_1.
Testo completoCao, Junhong, Tao Jiang, Jianzhong Shang, Yuze Xu e Zirong Luo. "Design of Humanoid Intelligent Mobile Target Robots". In Proceedings of 2021 International Conference on Autonomous Unmanned Systems (ICAUS 2021), 955–64. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9492-9_94.
Testo completoAtti di convegni sul tema "Landing on a mobile target"
Beul, Marius, Sebastian Houben, Matthias Nieuwenhuisen e Sven Behnke. "Fast autonomous landing on a moving target at MBZIRC". In 2017 European Conference on Mobile Robots (ECMR). IEEE, 2017. http://dx.doi.org/10.1109/ecmr.2017.8098669.
Testo completoTatoglu, Akin, Cheng Chun Yin, Brianna Cervello, Antonio Corrado, Bernard Balko e Kiwon Sohn. "Aerial Vehicle Rapid 3D Map Generation for Safe Landing Area Detection". In ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-95849.
Testo completoUdomkesmalee, S., Ching-Fang Lin, A. Politopoulos, Guohui Hu e T. Huntsberger. "Autonomous Target Tracking for Asteroid Landing". In 4th International Conference on Control and Automation. Final Program and Book of Abstracts. IEEE, 2003. http://dx.doi.org/10.1109/icca.2003.1595036.
Testo completoLiu, Ming, e Zhongzheng Liu. "Mobile Aircraft Landing Stair Scheduling". In 2019 International Conference on Industrial Engineering and Systems Management (IESM). IEEE, 2019. http://dx.doi.org/10.1109/iesm45758.2019.8948217.
Testo completoSaripalli, Srikanth, e Gaurav S. Sukhatme. "Landing a Helicopter on a Moving Target". In 2007 IEEE International Conference on Robotics and Automation. IEEE, 2007. http://dx.doi.org/10.1109/robot.2007.363620.
Testo completoMohr, J., P. Hengst e W. McKay. "Design Change Management, Mobile Landing Platform". In Maritime Project Management 2016. RINA, 2016. http://dx.doi.org/10.3940/rina.mpm.2016.02.
Testo completoKumar, Darmesh, Jai Raj, Krishna Raghuwaiya e Jito Vanualailai. "Autonomous UAV Landing on Mobile Platforms". In 2021 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE). IEEE, 2021. http://dx.doi.org/10.1109/csde53843.2021.9718368.
Testo completoXu, Lingyun, e Haibo Luo. "Towards autonomous tracking and landing on moving target". In 2016 IEEE International Conference on Real-time Computing and Robotics (RCAR). IEEE, 2016. http://dx.doi.org/10.1109/rcar.2016.7784101.
Testo completoJung, Wooyoung, Youngjoo Kim e Hyochoong Bang. "Target state estimation for vision-based landing on a moving ground target". In 2016 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, 2016. http://dx.doi.org/10.1109/icuas.2016.7502552.
Testo completoK. Dalamagkidis. "A Mobile Landing Platform for Miniature Vertical Take-Off and Landing Vehicles". In 2006 14th Mediterranean Conference on Control and Automation. IEEE, 2006. http://dx.doi.org/10.1109/med.2006.236965.
Testo completoRapporti di organizzazioni sul tema "Landing on a mobile target"
Verma, S. K. Mobile Microwave Landing System (MMLS) User Interface. Fort Belvoir, VA: Defense Technical Information Center, maggio 1991. http://dx.doi.org/10.21236/ada237470.
Testo completoSchulz, Matthew. Target Modeling for Ground Mobile Branch (GMB). Fort Belvoir, VA: Defense Technical Information Center, agosto 2011. http://dx.doi.org/10.21236/ada558425.
Testo completoMuelaner, Jody Emlyn. Decarbonized Power Options for Non-road Mobile Machinery. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, gennaio 2023. http://dx.doi.org/10.4271/epr2023002.
Testo completobin Ahsan, Wahid, Imran Hossain, Habibur Rahman, Nasir Uddin, Kazi Harunur Rashid, Shahariar Ratul, Zannatul Ferdous, Fariha Islam e Abu MD Ehsan. Global Mobile App Accessibility: A Comparative Study of WCAG Compliance Across 12 Countries. Userhub, aprile 2024. http://dx.doi.org/10.58947/mxrc-rzkh.
Testo completoSarofim, Samer. Developing an Effective Targeted Mobile Application to Enhance Transportation Safety and Use of Active Transportation Modes in Fresno County: The Role of Application Design & Content. Mineta Transportation Institute, luglio 2021. http://dx.doi.org/10.31979/mti.2021.2013.
Testo completoQian, Yuping, Yangjun Zhang e WEILIN ZHUGE. Key Technology Challenges of Electric Ducted Fan Propulsion Systems for eVTOL. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, novembre 2023. http://dx.doi.org/10.4271/epr2023027.
Testo completoChotelal, Shreshta, Marla Dukharan, Jeetendra Khadan e Melissa Marchand. Financial Inclusion and FinTech in Suriname. Inter-American Development Bank, febbraio 2022. http://dx.doi.org/10.18235/0003988.
Testo completoThomas, Douglas, e Mellon Michael. Sublimation of terrestrial permafrost and the implications for ice-loss processes on Mars. Engineer Research and Development Center (U.S.), luglio 2021. http://dx.doi.org/10.21079/11681/41244.
Testo completoWaisner, Scott, Victor Medina, Charles Ellison, Jose Mattei-Sosa, John Brasher, Jacob Lalley e Christopher Griggs. Design, construction, and testing of the PFAS Effluent Treatment System (PETS), a mobile ion exchange–based system for the treatment of per-, poly-fluorinated alkyl substances (PFAS) contaminated water. Engineer Research and Development Center (U.S.), marzo 2022. http://dx.doi.org/10.21079/11681/43823.
Testo completoRoberts, Tony, Judy Gitahi, Patrick Allam, Lawrence Oboh, Oyewole Oladapo, Gifty Appiah-Adjei, Amira Galal et al. Mapping the Supply of Surveillance Technologies to Africa: Case Studies from Nigeria, Ghana, Morocco, Malawi, and Zambia. Institute of Development Studies, settembre 2023. http://dx.doi.org/10.19088/ids.2023.027.
Testo completo