Articoli di riviste sul tema "Kernel Inference"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Kernel Inference".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.
Nishiyama, Yu, Motonobu Kanagawa, Arthur Gretton, and Kenji Fukumizu. "Model-based kernel sum rule: kernel Bayesian inference with probabilistic models." Machine Learning 109, no. 5 (2020): 939–72. http://dx.doi.org/10.1007/s10994-019-05852-9.
Testo completoRogers, Mark F., Colin Campbell, and Yiming Ying. "Probabilistic Inference of Biological Networks via Data Integration." BioMed Research International 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/707453.
Testo completoLUGO-MARTINEZ, JOSE, and PREDRAG RADIVOJAC. "Generalized graphlet kernels for probabilistic inference in sparse graphs." Network Science 2, no. 2 (2014): 254–76. http://dx.doi.org/10.1017/nws.2014.14.
Testo completoLazarus, Eben, Daniel J. Lewis, and James H. Stock. "The Size‐Power Tradeoff in HAR Inference." Econometrica 89, no. 5 (2021): 2497–516. http://dx.doi.org/10.3982/ecta15404.
Testo completoBillio, M. "Kernel-Based Indirect Inference." Journal of Financial Econometrics 1, no. 3 (2003): 297–326. http://dx.doi.org/10.1093/jjfinec/nbg014.
Testo completoZhang, Li Lyna, Shihao Han, Jianyu Wei, Ningxin Zheng, Ting Cao, and Yunxin Liu. "nn-METER." GetMobile: Mobile Computing and Communications 25, no. 4 (2022): 19–23. http://dx.doi.org/10.1145/3529706.3529712.
Testo completoRobinson, P. M. "INFERENCE ON NONPARAMETRICALLY TRENDING TIME SERIES WITH FRACTIONAL ERRORS." Econometric Theory 25, no. 6 (2009): 1716–33. http://dx.doi.org/10.1017/s0266466609990302.
Testo completoYuan, Ao. "Semiparametric inference with kernel likelihood." Journal of Nonparametric Statistics 21, no. 2 (2009): 207–28. http://dx.doi.org/10.1080/10485250802553382.
Testo completoCheng, Yansong, and Surajit Ray. "Multivariate Modality Inference Using Gaussian Kernel." Open Journal of Statistics 04, no. 05 (2014): 419–34. http://dx.doi.org/10.4236/ojs.2014.45041.
Testo completoAgbokou, Komi, and Yaogan Mensah. "INFERENCE ON THE REPRODUCING KERNEL HILBERT SPACES." Universal Journal of Mathematics and Mathematical Sciences 15 (October 10, 2021): 11–29. http://dx.doi.org/10.17654/2277141722002.
Testo completoMemisevic, R., L. Sigal, and D. J. Fleet. "Shared Kernel Information Embedding for Discriminative Inference." IEEE Transactions on Pattern Analysis and Machine Intelligence 34, no. 4 (2012): 778–90. http://dx.doi.org/10.1109/tpami.2011.154.
Testo completoMaswadah, M. "Kernel Inference on the Inverse Weibull Distribution." Communications for Statistical Applications and Methods 13, no. 3 (2006): 503–12. http://dx.doi.org/10.5351/ckss.2006.13.3.503.
Testo completoRacine, Jeffrey S., and James G. MacKinnon. "Inference via kernel smoothing of bootstrap values." Computational Statistics & Data Analysis 51, no. 12 (2007): 5949–57. http://dx.doi.org/10.1016/j.csda.2006.11.013.
Testo completoSun, Yixiao, and Jingjing Yang. "Testing-optimal kernel choice in HAR inference." Journal of Econometrics 219, no. 1 (2020): 123–36. http://dx.doi.org/10.1016/j.jeconom.2020.06.007.
Testo completoKondratyev, Dmitry A. "Towards Automatic Deductive Verification of C Programs with Sisal Loops Using the C-lightVer System." Modeling and Analysis of Information Systems 28, no. 4 (2021): 372–93. http://dx.doi.org/10.18255/1818-1015-2021-4-372-393.
Testo completoLei, Zijian, and Liang Lan. "Memory and Computation-Efficient Kernel SVM via Binary Embedding and Ternary Model Coefficients." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 9 (2021): 8316–23. http://dx.doi.org/10.1609/aaai.v35i9.17011.
Testo completoCawley, Gavin C., and Nicola L. C. Talbot. "Kernel learning at the first level of inference." Neural Networks 53 (May 2014): 69–80. http://dx.doi.org/10.1016/j.neunet.2014.01.011.
Testo completoWang, Kai. "Conditional asymptotic inference for the kernel association test." Bioinformatics 33, no. 23 (2017): 3733–39. http://dx.doi.org/10.1093/bioinformatics/btx511.
Testo completoLu, Chi-Ken, and Patrick Shafto. "Conditional Deep Gaussian Processes: Empirical Bayes Hyperdata Learning." Entropy 23, no. 11 (2021): 1387. http://dx.doi.org/10.3390/e23111387.
Testo completoKumar, Mukesh, and Santanu Kumar Rath. "Classification of Microarray Data Using Kernel Fuzzy Inference System." International Scholarly Research Notices 2014 (August 21, 2014): 1–18. http://dx.doi.org/10.1155/2014/769159.
Testo completoMassaroppe, Lucas, and Luiz Baccalá. "Kernel Methods for Nonlinear Connectivity Detection." Entropy 21, no. 6 (2019): 610. http://dx.doi.org/10.3390/e21060610.
Testo completoStordal, Andreas S., Rafael J. Moraes, Patrick N. Raanes, and Geir Evensen. "p-Kernel Stein Variational Gradient Descent for Data Assimilation and History Matching." Mathematical Geosciences 53, no. 3 (2021): 375–93. http://dx.doi.org/10.1007/s11004-021-09937-x.
Testo completoAuzina, Ilze A., and Jakub M. Tomczak. "Approximate Bayesian Computation for Discrete Spaces." Entropy 23, no. 3 (2021): 312. http://dx.doi.org/10.3390/e23030312.
Testo completoXiao, Chengcheng, Xiaowen Liu, Chi Sun, Zhongyu Liu, and Enjie Ding. "Hierarchical Prototypes Polynomial Softmax Loss Function for Visual Classification." Applied Sciences 12, no. 20 (2022): 10336. http://dx.doi.org/10.3390/app122010336.
Testo completoLiang, Junjie, Yanting Wu, Dongkuan Xu, and Vasant G. Honavar. "Longitudinal Deep Kernel Gaussian Process Regression." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 10 (2021): 8556–64. http://dx.doi.org/10.1609/aaai.v35i10.17038.
Testo completoNie, Junlan, Ruibo Gao, and Ye Kang. "Urban Noise Inference Model Based on Multiple Views and Kernel Tensor Decomposition." Fluctuation and Noise Letters 20, no. 03 (2021): 2150027. http://dx.doi.org/10.1142/s0219477521500279.
Testo completoHou, Yuxin, Ari Heljakka, and Arno Solin. "Gaussian Process Priors for View-Aware Inference." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 9 (2021): 7762–70. http://dx.doi.org/10.1609/aaai.v35i9.16948.
Testo completoMaswadah, Mohamed, and Seham Mohamed. "Bayesian Inference on the Generalized Exponential Distribution Based on the Kernel Prior." Science Journal of Applied Mathematics and Statistics 12, no. 2 (2024): 29–36. http://dx.doi.org/10.11648/j.sjams.20241202.12.
Testo completoWang, Qihuan, Haolin Yang, Qianghao He, Dong Yue, Ce Zhang, and Duanyang Geng. "Real-Time Detection System of Broken Corn Kernels Based on BCK-YOLOv7." Agronomy 13, no. 7 (2023): 1750. http://dx.doi.org/10.3390/agronomy13071750.
Testo completoZhang, Rui, Christian Walder, and Marian-Andrei Rizoiu. "Variational Inference for Sparse Gaussian Process Modulated Hawkes Process." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (2020): 6803–10. http://dx.doi.org/10.1609/aaai.v34i04.6160.
Testo completoCui, Chen, Shengyi Jiang, and Bruno C. d. S. Oliveira. "Greedy Implicit Bounded Quantification." Proceedings of the ACM on Programming Languages 7, OOPSLA2 (2023): 2083–111. http://dx.doi.org/10.1145/3622871.
Testo completoTeng, Tong, Jie Chen, Yehong Zhang, and Bryan Kian Hsiang Low. "Scalable Variational Bayesian Kernel Selection for Sparse Gaussian Process Regression." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (2020): 5997–6004. http://dx.doi.org/10.1609/aaai.v34i04.6061.
Testo completoGudmundarson, Ragnar L., and Gareth W. Peters. "Assessing portfolio diversification via two-sample graph kernel inference. A case study on the influence of ESG screening." PLOS ONE 19, no. 4 (2024): e0301804. http://dx.doi.org/10.1371/journal.pone.0301804.
Testo completoRocha, Gustavo H. M. A., Rosangela H. Loschi, and Reinaldo B. Arellano-Valle. "Inference in flexible families of distributions with normal kernel." Statistics 47, no. 6 (2013): 1184–206. http://dx.doi.org/10.1080/02331888.2012.688207.
Testo completoGao, Junbin, Paul W. Kwan, and Daming Shi. "Sparse kernel learning with LASSO and Bayesian inference algorithm." Neural Networks 23, no. 2 (2010): 257–64. http://dx.doi.org/10.1016/j.neunet.2009.07.001.
Testo completoCapobianco, Enrico. "Kernel methods and flexible inference for complex stochastic dynamics." Physica A: Statistical Mechanics and its Applications 387, no. 16-17 (2008): 4077–98. http://dx.doi.org/10.1016/j.physa.2008.03.003.
Testo completoLam, Clifford, and Jianqing Fan. "Profile-kernel likelihood inference with diverging number of parameters." Annals of Statistics 36, no. 5 (2008): 2232–60. http://dx.doi.org/10.1214/07-aos544.
Testo completoLi, Bochong, and Lingchong You. "Stochastic Sensitivity Analysis and Kernel Inference via Distributional Data." Biophysical Journal 107, no. 5 (2014): 1247–55. http://dx.doi.org/10.1016/j.bpj.2014.07.025.
Testo completoLi, Degui, Peter C. B. Phillips, and Jiti Gao. "Kernel-based Inference in Time-Varying Coefficient Cointegrating Regression." Journal of Econometrics 215, no. 2 (2020): 607–32. http://dx.doi.org/10.1016/j.jeconom.2019.10.005.
Testo completoPatel, Zeel B., Palak Purohit, Harsh M. Patel, Shivam Sahni, and Nipun Batra. "Accurate and Scalable Gaussian Processes for Fine-Grained Air Quality Inference." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 11 (2022): 12080–88. http://dx.doi.org/10.1609/aaai.v36i11.21467.
Testo completoRen, Ming, Chi Cheung, and Gao Xiao. "Gaussian Process Based Bayesian Inference System for Intelligent Surface Measurement." Sensors 18, no. 11 (2018): 4069. http://dx.doi.org/10.3390/s18114069.
Testo completoSong, Le, Kenji Fukumizu, and Arthur Gretton. "Kernel Embeddings of Conditional Distributions: A Unified Kernel Framework for Nonparametric Inference in Graphical Models." IEEE Signal Processing Magazine 30, no. 4 (2013): 98–111. http://dx.doi.org/10.1109/msp.2013.2252713.
Testo completoGonzález-Vanegas, Wilson, Andrés Álvarez-Meza, José Hernández-Muriel, and Álvaro Orozco-Gutiérrez. "AKL-ABC: An Automatic Approximate Bayesian Computation Approach Based on Kernel Learning." Entropy 21, no. 10 (2019): 932. http://dx.doi.org/10.3390/e21100932.
Testo completoHuh, Jaeseok, Jonghun Park, Dongmin Shin, and Yerim Choi. "A Hierarchical SVM Based Behavior Inference of Human Operators Using a Hybrid Sequence Kernel." Sustainability 11, no. 18 (2019): 4836. http://dx.doi.org/10.3390/su11184836.
Testo completoLee, Dong-Yeong, Hayotjon Aliev, Muhammad Junaid, et al. "High-Speed CNN Accelerator SoC Design Based on a Flexible Diagonal Cyclic Array." Electronics 13, no. 8 (2024): 1564. http://dx.doi.org/10.3390/electronics13081564.
Testo completoMohanty, Pete, and Robert Shaffer. "Messy Data, Robust Inference? Navigating Obstacles to Inference with bigKRLS." Political Analysis 27, no. 2 (2018): 127–44. http://dx.doi.org/10.1017/pan.2018.33.
Testo completoDixit, Purushottam D. "Introducing User-Prescribed Constraints in Markov Chains for Nonlinear Dimensionality Reduction." Neural Computation 31, no. 5 (2019): 980–97. http://dx.doi.org/10.1162/neco_a_01184.
Testo completoUeda, K. "Design of the Kernel Language for the Parallel Inference Machine." Computer Journal 33, no. 6 (1990): 494–500. http://dx.doi.org/10.1093/comjnl/33.6.494.
Testo completoTsionas, Efthymios G. "Bayesian inference in time series models using kernel quasi likelihoods." Statistica Neerlandica 56, no. 3 (2002): 285–94. http://dx.doi.org/10.1111/1467-9574.04800.
Testo completoCai, Qianfeng, Zhifeng Hao, and Xiaowei Yang. "Gaussian kernel-based fuzzy inference systems for high dimensional regression." Neurocomputing 77, no. 1 (2012): 197–204. http://dx.doi.org/10.1016/j.neucom.2011.09.005.
Testo completo