Segui questo link per vedere altri tipi di pubblicazioni sul tema: Jets.

Articoli di riviste sul tema "Jets"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Jets".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.

1

Zhang, Yan-Jie, Qing-Min Zhang, Jun Dai, Zhe Xu e Hai-Sheng Ji. "Recurrent coronal jets observed by SDO/AIA". Research in Astronomy and Astrophysics 21, n. 10 (1 novembre 2021): 262. http://dx.doi.org/10.1088/1674-4527/21/10/262.

Testo completo
Abstract (sommario):
Abstract In this paper, we carried out multiwavelength observations of three recurring jets on 2014 November 7. The jets originated from the same region at the edge of AR 12205 and propagated along the same coronal loop. The eruptions were generated by magnetic reconnection, which is evidenced by continuous magnetic cancellation at the jet base. The projected initial velocity of jet2 is ∼402 km s−1. The accelerations in the ascending and descending phases of jet2 are not consistent, the former is considerably larger than the value of g ⊙ at the solar surface, while the latter is lower than g ⊙. There are two possible candidates of extra forces acting on jet2 during its propagation. One is the downward gas pressure from jet1 when it falls back and meets with jet2. The other is the viscous drag from the surrounding plasma during the fast propagation of jet2. As a contrast, the accelerations of jet3 in the rising and falling phases are constant, implying that the propagation of jet3 is not significantly influenced by extra forces.
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Moore, Ronald L., Jonathan W. Cirtain, Alphonse C. Sterling e David A. Falconer. "DICHOTOMY OF SOLAR CORONAL JETS: STANDARD JETS AND BLOWOUT JETS". Astrophysical Journal 720, n. 1 (13 agosto 2010): 757–70. http://dx.doi.org/10.1088/0004-637x/720/1/757.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Rhines, Peter B. "Jets". Chaos: An Interdisciplinary Journal of Nonlinear Science 4, n. 2 (giugno 1994): 313–39. http://dx.doi.org/10.1063/1.166011.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Falle, S. A. E. G. "Jets". Astrophysics and Space Science 216, n. 1-2 (giugno 1994): 119–25. http://dx.doi.org/10.1007/bf00982478.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Plaschke, Ferdinand, e Heli Hietala. "Plasma flow patterns in and around magnetosheath jets". Annales Geophysicae 36, n. 3 (3 maggio 2018): 695–703. http://dx.doi.org/10.5194/angeo-36-695-2018.

Testo completo
Abstract (sommario):
Abstract. The magnetosheath is commonly permeated by localized high-speed jets downstream of the quasi-parallel bow shock. These jets are much faster than the ambient magnetosheath plasma, thus raising the question of how that latter plasma reacts to incoming jets. We have performed a statistical analysis based on 662 cases of one THEMIS spacecraft observing a jet and another (second) THEMIS spacecraft providing context observations of nearby plasma to uncover the flow patterns in and around jets. The following results are found: along the jet's path, slower plasma is accelerated and pushed aside ahead of the fastest core jet plasma. Behind the jet core, plasma flows into the path to fill the wake. This evasive plasma motion affects the ambient magnetosheath, close to the jet's path. Diverging and converging plasma flows ahead and behind the jet are complemented by plasma flows opposite to the jet's propagation direction, in the vicinity of the jet. This vortical plasma motion results in a deceleration of ambient plasma when a jet passes nearby. Keywords. Magnetospheric physics (magnetosheath; MHD waves and instabilities; solar wind–magnetosphere interactions)
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Kimura, Motoaki, e Norimasa Miyagi. "STUDY ON DIFFUSION OF BUOYANT ROUND JETS(Jet and Plume)". Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2005 (2005): 413–18. http://dx.doi.org/10.1299/jsmeicjwsf.2005.413.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Spencer, Ralph, Chris De La Force e Alastair Stirling. "Microquasar Jets: A Comparison with Extragalactic Jets". Symposium - International Astronomical Union 205 (2001): 264–65. http://dx.doi.org/10.1017/s0074180900221141.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Denis, S., J. Delville, J.-H. Garem e J.-P. Bonnet. "Control of jets expansion by impeding jets". ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 80, S1 (2000): 81–84. http://dx.doi.org/10.1002/zamm.20000801321.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Kudoh, T., K. Shibata e R. Matsumoto. "8.9. MHD simulations of jets from accretion disks: nonsteady jets vs. steady jets". Symposium - International Astronomical Union 184 (1998): 361–62. http://dx.doi.org/10.1017/s0074180900085223.

Testo completo
Abstract (sommario):
We present the results of 2.5-dimensional MHD simulations for jet formation from accretion disks in a situation such that not only ejection but also accretion of disk plasma are also included self-consistently. Although the jets in nonsteady MHD simulations (e.g., Uchida & Shibata 1985, Shibata & Uchida 1986, Matsumoto et al. 1996) have often been referred to as transient phenomena resulting from a special choice of initial conditions, we found that the characteristics of the nonsteady jets are very similar to those of steady jets: (1) The ejection point of the jet, which corresponds to slow magnetosonic point in steady MHD jet theory, is determined by the effective potential which results from the gravitational force and the centrifugal force along a field line (Blandford & Payne 1982). (2) The dependence of the velocity (vz) and mass outflow rate (Ṁω) on the initial magnetic field strength is about Ṁω ∝ B0 and vz ∝ (Ω2FB20/Ṁω)1/3, where B0 is an initial poloidal magnetic field strength, and ΩF is an ‘angular velocity of the field line’ which is nearly the same as the Keplerian angular velocity where the jet is ejected. These are consistent with those of 1D steady solution (Kudoh & Shibata 1997), although the explanation is a little complicated in the 2.5D case because of an avalanche-like accretion. We also confirm that the velocity of the jet is of order of the Keplerian velocity of the disk for a wide range of parameters. We conclude that the ejection mechanism of nonsteady jets found in the 2.5-dimensional simulations are understood with a previous theory which is studied on the assumption of steady state even when nonsteady avalanche-like accretions occur along the surface of disks.
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Pasko, Victor P. "Electric jets". Nature 423, n. 6943 (giugno 2003): 927–28. http://dx.doi.org/10.1038/423927a.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
11

Wilson, M. J., e S. A. E. G. Falle. "Steady jets". Monthly Notices of the Royal Astronomical Society 216, n. 4 (ottobre 1985): 971–85. http://dx.doi.org/10.1093/mnras/216.4.971.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
12

Bell, A. R. "Magnetohydrodynamic jets*". Physics of Plasmas 1, n. 5 (maggio 1994): 1643–52. http://dx.doi.org/10.1063/1.870666.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
13

Antkowiak, Arnaud, Nicolas Bremond, Jérôme Duplat, Stéphane Le Dizès e Emmanuel Villermaux. "Cavity jets". Physics of Fluids 19, n. 9 (settembre 2007): 091112. http://dx.doi.org/10.1063/1.2775413.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
14

Chicone, C., B. Mashhoon e K. Rosquist. "Cosmic jets". Physics Letters A 375, n. 12 (marzo 2011): 1427–30. http://dx.doi.org/10.1016/j.physleta.2011.02.036.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
15

Bicknell, Geoffrey V., Dayton L. Jones e Matthew Lister. "Relativistic jets". New Astronomy Reviews 48, n. 11-12 (dicembre 2004): 1151–55. http://dx.doi.org/10.1016/j.newar.2004.09.005.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
16

Leoncini, Xavier, e George M. Zaslavsky. "Chaotic jets". Communications in Nonlinear Science and Numerical Simulation 8, n. 3-4 (settembre 2003): 265–71. http://dx.doi.org/10.1016/s1007-5704(03)00038-8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
17

HEWITT, RICHARD E., e PETER W. DUCK. "Pulsatile jets". Journal of Fluid Mechanics 670 (12 gennaio 2011): 240–59. http://dx.doi.org/10.1017/s0022112010005227.

Testo completo
Abstract (sommario):
We consider the evolution of high-Reynolds-number, planar, pulsatile jets in an incompressible viscous fluid. The source of the jet flow comprises a mean-flow component with a superposed temporally periodic pulsation, and we address the spatiotemporal evolution of the resulting system. The analysis is presented for both a free symmetric jet and a wall jet. In both cases, pulsation of the source flow leads to a downstream short-wave linear instability, which triggers a breakdown of the boundary-layer structure in the nonlinear regime. We extend the work of Riley, Sánchez-Sans & Watson (J. Fluid Mech., vol. 638, 2009, p. 161) to show that the linear instability takes the form of a wave that propagates with the underlying jet flow, and may be viewed as a (spatially growing) weakly non-parallel analogue of the (temporally growing) short-wave modes identified by Cowley, Hocking & Tutty (Phys. Fluids, vol. 28, 1985, p. 441). The nonlinear evolution of the instability leads to wave steepening, and ultimately a singular breakdown of the jet is obtained at a critical downstream position. We speculate that the form of the breakdown is associated with the formation of a ‘pseudo-shock’ in the jet, indicating a failure of the (long-length scale) boundary-layer scaling. The numerical results that we present disagree with the recent results of Riley et al. (2009) in the case of a free jet, together with other previously published works in this area.
Gli stili APA, Harvard, Vancouver, ISO e altri
18

Halzen, Francis, e Duncan A. Morris. "Coplanar jets". Physical Review D 42, n. 5 (1 settembre 1990): 1435–39. http://dx.doi.org/10.1103/physrevd.42.1435.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
19

Thoroddsen, S. T., e Amy Q. Shen. "Granular jets". Physics of Fluids 13, n. 1 (gennaio 2001): 4–6. http://dx.doi.org/10.1063/1.1328359.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
20

DE YOUNG, D. S. "Astrophysical Jets". Science 252, n. 5004 (19 aprile 1991): 389–96. http://dx.doi.org/10.1126/science.252.5004.389.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Wall, C. T. C. "Equivariant jets". Mathematische Annalen 272, n. 1 (marzo 1985): 41–65. http://dx.doi.org/10.1007/bf01455927.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
22

MURAMATSU, Akinori, Kuu Kashino e Seiichi Terahara. "Side jets in strongly-forced round air jets". Journal of the Visualization Society of Japan 28-1, n. 2 (2008): 1009. http://dx.doi.org/10.3154/jvs.28.1009.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Saltó, Oriol. "+ Jets and + Heavy Flavor Jets at the Tevatron". Nuclear Physics B - Proceedings Supplements 186 (gennaio 2009): 15–18. http://dx.doi.org/10.1016/j.nuclphysbps.2008.12.003.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
24

Smith, B. L., e G. W. Swift. "A comparison between synthetic jets and continuous jets". Experiments in Fluids 34, n. 4 (5 febbraio 2003): 467–72. http://dx.doi.org/10.1007/s00348-002-0577-6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
25

Pumplin, Jon. "How to tell quark jets from gluon jets". Physical Review D 44, n. 7 (1 ottobre 1991): 2025–32. http://dx.doi.org/10.1103/physrevd.44.2025.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
26

Tomac, Mehmet N. "Novel impinging jets-based non-periodic sweeping jets". Journal of Visualization 23, n. 3 (5 marzo 2020): 369–72. http://dx.doi.org/10.1007/s12650-020-00633-2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
27

Sapinski, Mariusz. "Expected performance of ATLAS for measurements of jets, b-jets, τ-jets, and ETmiss". EPJ direct 4, S1 (settembre 2002): 1–12. http://dx.doi.org/10.1007/s1010502cs108.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
28

Toyoda, Kuniaki, Jun Akazawa, Hayato Mori e Riho Hiramoto. "EFFECT OF STREAMWISE VORTICES ON THE CHARACTERISTICS OF JETS(Plane Jet)". Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2005 (2005): 171–76. http://dx.doi.org/10.1299/jsmeicjwsf.2005.171.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
29

Shinohara, Eri, Fumitoshi Okamoto, Yuki Kitaoka, Kazuya Tatsumi e Kazuyoshi Nakabe. "MIXING CHARACTERISTICS OF MULTI-JETS MODIFIED BY CYCLIC PERTURBATION(Multiple Jet)". Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2005 (2005): 255–60. http://dx.doi.org/10.1299/jsmeicjwsf.2005.255.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
30

Dekrét, Anton. "On quasi-jets". Časopis pro pěstování matematiky 111, n. 4 (1986): 345–52. http://dx.doi.org/10.21136/cpm.1986.118284.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
31

Fendt, Christian, e Somayeh Sheikhnezami. "BIPOLAR JETS LAUNCHED FROM ACCRETION DISKS. II. THE FORMATION OF ASYMMETRIC JETS AND COUNTER JETS". Astrophysical Journal 774, n. 1 (8 agosto 2013): 12. http://dx.doi.org/10.1088/0004-637x/774/1/12.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
32

Lim, A. J. "Variable stellar jets -- II. Precessing jets and stagnation knots". Monthly Notices of the Royal Astronomical Society 327, n. 2 (21 ottobre 2001): 507–16. http://dx.doi.org/10.1046/j.1365-8711.2001.04772.x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
33

Tyliszczak, Artur. "Multi-armed jets: A subset of the blooming jets". Physics of Fluids 27, n. 4 (aprile 2015): 041703. http://dx.doi.org/10.1063/1.4917179.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
34

Sterling, Alphonse C., Ronald L. Moore e Navdeep K. Panesar. "Solar Active Region Coronal Jets. III. Hidden-onset Jets". Astrophysical Journal 960, n. 2 (1 gennaio 2024): 109. http://dx.doi.org/10.3847/1538-4357/acff6b.

Testo completo
Abstract (sommario):
Abstract Solar quiet- and coronal-hole region coronal jets frequently clearly originate from erupting minifilaments, but active-region jets often lack an obvious erupting-minifilament source. We observe a coronal-jet-productive active region (AR), AR 12824, over 2021 May 22 0–8 UT, primarily using Solar Dynamics Observatory (SDO) Atmospheric Imaging Array (AIA) EUV images and SDO/Helioseismic and Magnetic Imager magnetograms. Jets were concentrated in two locations in the AR: on the south side and on the northwest side of the AR’s lone large sunspot. The south-location jets are oriented so that we have a clear view of the jets’ origin low in the atmosphere: their source is clearly minifilaments erupting from locations showing magnetic flux changes/cancelations. After erupting a projected distance ≲5″ away from their origin site, the minifilaments erupt outward onto far-reaching field as part of the jet’s spire, quickly losing their minifilament character. In contrast, the northwest-location jets show no clear erupting minifilament, but the source site of those jets are obscured along our line of sight by absorbing chromospheric material. EUV and magnetic data indicate that the likely source sites were ≳15″ from where the we first see the jet spire; thus, an erupting minifilament would likely lose its minifilament character before we first see the spire. We conclude that such AR jets could work like non-AR jets, but the erupting-minifilament jet source is often hidden by obscuring material. Another factor is that magnetic eruptions making some AR jets carry only a harder-to-detect comparatively thin (∼1″–2″) minifilament “strand.”
Gli stili APA, Harvard, Vancouver, ISO e altri
35

Jacquemin-Ide, J., J. Ferreira e G. Lesur. "Magnetically driven jets and winds from weakly magnetized accretion discs". Monthly Notices of the Royal Astronomical Society 490, n. 3 (3 ottobre 2019): 3112–33. http://dx.doi.org/10.1093/mnras/stz2749.

Testo completo
Abstract (sommario):
Abstract Semi-analytical models of disc outflows have successfully described magnetically driven, self-confined super-Alfvénic jets from near-Keplerian accretion discs. These jet-emitting discs (JEDs) are possible for high levels of disc magnetization μ defined as μ = 2/β, where beta is the usual plasma parameter. In near-equipartition JEDs, accretion is supersonic and jets carry away most of the disc angular momentum. However, these solutions prove difficult to compare with cutting-edge numerical simulations, for the reason that numerical simulations show wind-like outflows but in the domain of small magnetization. In this work, we present for the first time self-similar isothermal solutions for accretion–ejection structures at small magnetization levels. We elucidate the role of magnetorotational instability-like (MRI) structures in the acceleration processes that drive this new class of solutions. The disc magnetization μ is the main control parameter: Massive outflows driven by the pressure of the toroidal magnetic field are obtained up to μ ∼ 10−2, while more tenuous centrifugally driven outflows are obtained at larger μ values. The generalized parameter space and the astrophysical consequences are discussed. We believe that these new solutions could be a stepping stone in understanding the way astrophysical discs drive either winds or jets. Defining jets as self-confined outflows and winds as uncollimated outflows, we propose a simple analytical criterion based on the initial energy content of the outflow, to discriminate jets from winds. We show that jet solution is achieved at all magnetization levels, while winds could be obtained only in weakly magnetized discs that feature heating.
Gli stili APA, Harvard, Vancouver, ISO e altri
36

Ferreira, Jonathan, e Pierre Olivier Petrucci. "Jet launching and field advection in quasi-Keplerian discs". Proceedings of the International Astronomical Union 6, S275 (settembre 2010): 260–64. http://dx.doi.org/10.1017/s1743921310016121.

Testo completo
Abstract (sommario):
AbstractThe fact that self-confined jets are observed around black holes, neutron stars and young forming stars points to a jet launching mechanism independent of the nature of the central object, namely the surrounding accretion disc. The properties of Jet Emitting Discs (JEDs) are briefly reviewed. It is argued that, within an alpha prescription for the turbulence (anomalous viscosity and diffusivity), the steady-state problem has been solved. Conditions for launching jets are very stringent and require a large scale magnetic field Bz close to equipartition with the total (gas and radiation) pressure. The total power feeding the jets decreases with the disc thickness: fat ADAF-like structures with h ~ r cannot drive super-Alfvénic jets. However, there exist also hot, optically thin JED solutions that would be observationally very similar to ADAFs.Finally, it is argued that variations in the large scale magnetic Bz field is the second parameter required to explain hysteresis cycles seen in LMXBs (the first one would be Ṁa).
Gli stili APA, Harvard, Vancouver, ISO e altri
37

Okita, Yuji, Katsutaka Nakamura, Yuuta Shiizaki e Daisuke Nobuta. "LASER OBSERVATION ON THE INNER FLOW STRUCTURE OF WATER JETS(Water Jet)". Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2005 (2005): 337–42. http://dx.doi.org/10.1299/jsmeicjwsf.2005.337.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
38

Takaichi, Naoaki, Naoya Shigemori e Katsuhiro Yamamoto. "BEHAVIOR OF HIGH-SPEED PULSE WATER JETS IN THE ATMOSPHERE(Water Jet)". Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2005 (2005): 343–48. http://dx.doi.org/10.1299/jsmeicjwsf.2005.343.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
39

Tsujimoto, Koichi, Toshihiko Shakouchi, Shuji Sasazaki e Toshitake Ando. "Direct Numerical Simulation of Jet Mixing Control Using Combined Jets(Numerical Simulation)". Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2005 (2005): 725–30. http://dx.doi.org/10.1299/jsmeicjwsf.2005.725.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
40

Zhang, Binglong, He Liu, Yangyang Li, Hui Liu e Jinzhong Dong. "Experimental Study of Coaxial Jets Mixing Enhancement Using Synthetic Jets". Applied Sciences 11, n. 2 (15 gennaio 2021): 803. http://dx.doi.org/10.3390/app11020803.

Testo completo
Abstract (sommario):
Synthetic jets perpendicular to the mainstream have been used to experimentally study the coaxial jets mixing enhancement in this paper. The parameters of coaxial jets such as vorticity, streamwise velocity, radial velocity, Reynolds shear stress, and turbulence intensity are measured using the particle image velocimetry (PIV) and hot wire anemometers. The distribution characteristics of these parameters with and without synthetic jets were obtained. The mechanism of coaxial jets mixing enhancement using synthetic jets was summarized by analyzing these experimental results, and it was also found that the momentum coefficient was the most critical factor for jets mixing enhancement. The comparative experiments fully verified the mechanism, showing that with an appropriate momentum coefficient, the synthetic jets significantly enhanced coaxial jets mixing.
Gli stili APA, Harvard, Vancouver, ISO e altri
41

Waliszewski, Włodzimierz. "Jets in differential spaces". Časopis pro pěstování matematiky 110, n. 3 (1985): 241–49. http://dx.doi.org/10.21136/cpm.1985.118231.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
42

Pfister, Michael. "Deflector-generated jets". Journal of Hydraulic Research 47, n. 4 (2009): 000. http://dx.doi.org/10.3826/jhr.2009.3525.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
43

Hautmann, F. "QCD and Jets". Acta Physica Polonica B 44, n. 4 (2013): 761. http://dx.doi.org/10.5506/aphyspolb.44.761.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
44

Falle, S. A. E. G., D. E. Innes e M. J. Wilson. "Steady stellar jets". Monthly Notices of the Royal Astronomical Society 225, n. 4 (1 aprile 1987): 741–59. http://dx.doi.org/10.1093/mnras/225.4.741.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
45

Falle, S. A. E. G. "Self-similar jets". Monthly Notices of the Royal Astronomical Society 250, n. 3 (1 giugno 1991): 581–96. http://dx.doi.org/10.1093/mnras/250.3.581.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
46

Langenberg, Heike. "Jets of mystery". Nature Geoscience 1, n. 12 (dicembre 2008): 816. http://dx.doi.org/10.1038/ngeo373.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
47

Stuetz, Engelbert. "Colliding water jets". Physics Teacher 57, n. 3 (marzo 2019): 208. http://dx.doi.org/10.1119/1.5092500.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
48

Smith, Michael D. "Slender elliptical jets". Astrophysical Journal 421 (febbraio 1994): 400. http://dx.doi.org/10.1086/173659.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
49

Mironov, C., P. Constantin e G. J. Kunde. "Dilepton tagged jets". European Physical Journal C 49, n. 1 (8 novembre 2006): 19–22. http://dx.doi.org/10.1140/epjc/s10052-006-0114-5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
50

Renk, Thorsten. "Jets in Medium". Progress of Theoretical Physics Supplement 193 (2012): 101–4. http://dx.doi.org/10.1143/ptps.193.101.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia