Articoli di riviste sul tema "Iron structures"

Segui questo link per vedere altri tipi di pubblicazioni sul tema: Iron structures.

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Iron structures".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.

1

Chen, Jianlin, Shaolin Chen, Liu Zhong, Hao Feng, Yaoming Xie e R. Bruce King. "Binuclear Methylborole Iron Carbonyls: Iron−Iron Multiple Bonds and Perpendicular Structures". Inorganic Chemistry 50, n. 4 (21 febbraio 2011): 1351–60. http://dx.doi.org/10.1021/ic101956z.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

WANG, LAI-SHENG, JIAWEN FAN e LIANG LOU. "IRON CLUSTERS AND OXYGEN-CHEMISORBED IRON CLUSTERS". Surface Review and Letters 03, n. 01 (febbraio 1996): 695–99. http://dx.doi.org/10.1142/s0218625x9600125x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
The photoelectron spectroscopy of size-selected [Formula: see text](n=3–24) clusters and oxygen-chemisorbed clusters Fe n O −(n=1–16), has been studied at 3.49-eV photon energy with a magnetic-bottle time-of-flight photoelectron spectrometer. While the spectra of the pure iron clusters show rather sharp features in the whole size range, those of the oxygen-chemisorbed species are considerably different, with extensive sharp structures observed for n only up to 6. The electron affinities (EAs) of both the bare and chemisorbed clusters exhibit strong size variations. However, the first oxygenation of the iron clusters induces a systematic lowering of EA in the size range n=9–15. Towards a complete molecular picture of these interesting clusters, density-functional calculations are being performed to determine the equilibrium cluster structures, oxygen chemisorption sites, and their electronic structures. The equilibrium structures obtained for Fe n O with n=2–6 are reported.
3

Marshall, W. G., J. S. Loveday, R. J. Nelmes, S. Klotz, G. Hamel, J. M. Besson e J. B. Parise. "Magnetic Structures of Iron Sulphide." REVIEW OF HIGH PRESSURE SCIENCE AND TECHNOLOGY 7 (1998): 565–67. http://dx.doi.org/10.4131/jshpreview.7.565.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Kolitsch, Uwe, Christian L. Lengauer e Gerald Giester. "Crystal structures and isotypism of the iron(III) arsenate kamarizaite and the iron(III) phosphate tinticite". European Journal of Mineralogy 28, n. 1 (23 marzo 2016): 71–81. http://dx.doi.org/10.1127/ejm/2015/0027-2485.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Li, Wei, Chandan Setty, X. H. Chen e Jiangping Hu. "Electronic and magnetic structures of chain structured iron selenide compounds". Frontiers of Physics 9, n. 4 (13 giugno 2014): 465–71. http://dx.doi.org/10.1007/s11467-014-0428-y.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Hafner, J. "Noncollinear magnetic structures in amorphous iron and iron-based alloys". Journal of Magnetism and Magnetic Materials 139, n. 1-2 (gennaio 1995): 209–27. http://dx.doi.org/10.1016/0304-8853(94)00440-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Lorenz, R., e J. Hafner. "Noncollinear magnetic structures in amorphous iron and iron-based alloys". Journal of Magnetism and Magnetic Materials 139, n. 1-2 (gennaio 1995): 209–27. http://dx.doi.org/10.1016/0304-8853(95)90049-7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Zhou, Liqing, Guoliang Li, Qian-Shu Li, Yaoming Xie e R. Bruce King. "The diversity of iron−sulfur bonding in binuclear iron carbonyl sulfides". Canadian Journal of Chemistry 92, n. 8 (agosto 2014): 750–57. http://dx.doi.org/10.1139/cjc-2014-0052.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
The potential accessibility of Fe2S(CO)n derivatives with 1:2 sulfur to iron ratios by the decarboxylation of iron carbonyl thionyls has led to their investigation using density functional theory. The lowest energy Fe2S(CO)n (n = 8, 7, 6) structures are predicted to be singlet structures with all terminal CO groups, a bridging sulfur atom, and a formal Fe–Fe single bond of length ∼2.5 Å. The Fe−S distances in these structures shorten from ∼2.3 to ∼2.1 Å as CO groups are lost, suggesting an increase in the formal Fe−S bond orders. The thermochemistry of CO dissociation suggests that both Fe2S(CO)8 and Fe2S(CO)7 are viable synthetic objectives. A similar density functional theory study of Fe2S2(CO)n derivatives (n = 7, 6, 5) finds the experimentally known Fe2S2(CO)7 structure with a bridging S2CO group and the Fe2S2(CO)6 structure with a bridging disulfide ligand to be the lowest energy structures by substantial margins of ∼17 and ∼21 kcal/mol, respectively. The low-energy structures for the unsaturated Fe2S2(CO)5 are derived from the low-energy Fe2S2(CO)6 structures by loss of a CO group in various ways with relatively little change in the underlying Fe2S2 framework.
9

Moy, S. S. J., e H. W. J. Clarke. "Strengthening wrought-iron structures using CFRP". Proceedings of the Institution of Civil Engineers - Structures and Buildings 162, n. 4 (agosto 2009): 251–61. http://dx.doi.org/10.1680/stbu.2009.162.4.251.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Ishikawa, Tatsuo. "Formation and Structures of Iron Oxides". Zairyo-to-Kankyo 46, n. 7 (1997): 411–17. http://dx.doi.org/10.3323/jcorr1991.46.411.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
11

Nelmes, R. J., M. I. McMahon, S. A. Belmonte, D. R. Allan, M. R. Gibbs e J. B. Parise. "High Pressure Structures of Iron Sulphide." REVIEW OF HIGH PRESSURE SCIENCE AND TECHNOLOGY 7 (1998): 202–4. http://dx.doi.org/10.4131/jshpreview.7.202.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
12

Kaduk, J. A. "D015 New iron fluoride crystal structures". Powder Diffraction 21, n. 2 (giugno 2006): 172. http://dx.doi.org/10.1154/1.2219800.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
13

Heift, Dominikus, Lise-Marie Lacroix, Pierre Lecante, Pier-Francesco Fazzini e Bruno Chaudret. "Controlling the Sulfidation Process of Iron Nanoparticles: Accessing Iron−Iron Sulfide Core-Shell Structures". ChemNanoMat 4, n. 7 (14 marzo 2018): 663–69. http://dx.doi.org/10.1002/cnma.201800027.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
14

Plata-Guzmán, Laura Y., Rossana Arroyo, Nidia León-Sicairos, Adrián Canizález-Román, Héctor S. López-Moreno, Jeanett Chávez-Ontiveros, José A. Garzón-Tiznado e Claudia León-Sicairos. "Stem–Loop Structures in Iron-Regulated mRNAs of Giardia duodenalis". International Journal of Environmental Research and Public Health 20, n. 4 (17 febbraio 2023): 3556. http://dx.doi.org/10.3390/ijerph20043556.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Giardia duodenalis is a significant cause of waterborne and foodborne infections, day-care center outbreaks, and traveler’s diarrhea worldwide. In protozoa such as Trichomonas vaginalis and Entamoeba histolytica, iron affects the growth, pathogenicity mechanisms, and expression of virulence genes. One of the proposed iron regulatory mechanisms is at the post-transcriptional level through an IRE/IRP-like (iron responsive element/iron regulatory protein) system. Recently, the expression of many putative giardial virulence factors in the free-iron levels has been reported in subsequent RNAseq experiments; however, the iron regulatory mechanism remains unknown. Thus, this work aimed to determine the effects of iron on the growth, gene expression, and presence of IRE-like structures in G. duodenalis. First, the parasite’s growth kinetics at different iron concentrations were studied, and the cell viability was determined. It was observed that the parasite can adapt to an iron range from 7.7 to 500 µM; however, in conditions without iron, it is unable to survive in the culture medium. Additionally, the iron modulation of three genes was determined by RT-PCR assays. The results suggested that Actin, glucosamine-6-phosphate deaminase, and cytochrome b5 mRNA were down-regulated by iron. To investigate the presence of IRE-like structures, in silico analyses were performed for different mRNAs from the Giardia genome database. The Zuker mfold v2.4 web server and theoretical analysis were used to predict the secondary structures of the 91 mRNAs analyzed. Interestingly, the iron-induced downregulation of the genes analyzed corresponds to the location of the stem–loop structures found in their UTR regions. In conclusion, iron modulates the growth and expression of specific genes, likely due to the presence of IRE-like structures in G. duodenalis mRNAs.
15

Gołdyn, Michał, e Tadeusz Urban. "Failures of the Cast-Iron Columns of Historic Buildings—Case Studies". Infrastructures 5, n. 9 (2 settembre 2020): 71. http://dx.doi.org/10.3390/infrastructures5090071.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Selected technical problems related to the rehabilitation of cast-iron columns in structures from the turn of the 19th and 20th century are discussed in the paper. Lack of contemporary standard regulations related to the design of cast-iron structures is a significant problem in the design works and experimental investigations on cast-iron columns are frequently required. The paper presents results of the tests concerning principal properties of cast-iron—strength and deformability. The historical design principles are discussed in the light of the results of experimental investigations. As it was demonstrated, the actual load-carrying capacities of cast-iron columns may exceed by several times the values resulting from the 20th century design rules. The conservatism of the design principles resulted, however, from the material uncertainties—lack of homogeneity and hidden defects of the cast-iron. Selected examples of failures of cast-iron columns from 19th-century structures such as post-industrial buildings and engineering structures are discussed. They resulted from errors made during adaptation works. The reasons for these failures and considered methods of repairing the structures are presented.
16

Doroshenko, Volodymyr, e Olexander Yanchenko. "METAL BEARING AND SEALING STRUCTURES FOR UNDERGROUND AND PROTECTIVE STRUCTURES". Modern technology, materials and design in construction 34, n. 1 (30 luglio 2023): 27–35. http://dx.doi.org/10.31649/2311-1429-2023-1-27-35.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
The development of new technologies for the construction of multi-purpose protective structures reflects the current need to improve measures to protect civilian human and material resources (and dual purpose) and increase defense capability with the help of structures, buildings, storage and shelters. For a thorough assessment of known developments on this topic, a review of the history and achievements in the field of production and use of metal materials and structures in the construction of underground and protective structures was carried out, achievements and shortcomings were analyzed. The main attention was paid to the experience of large-tonnage production of cast iron tubing at the enterprises of the former USSR, as the closest to modern times of large-scale production with significant results, useful for study and improvement in design and technological directions. Since the sixties of the last century, 25,000 to 40,000 tons of cast iron tubing were produced annually in the former USSR for fastening underground structures of various purposes, including for protective and special facilities. Almost all the trunks of Metrobud, many trunks of the Ministry of Defense and other ministries of the former USSR constantly used cast iron tubing at their facilities. For the present time, the necessity and possibility of intensification of the construction of protective structures through the use of metal materials, in particular high-strength casting alloys, especially high-strength cast irons, as well as resource-efficient casting methods for the production of construction and protective segments or tubing, have been identified. The most suitable technology for such production of thin-walled lightweight metal products at the present time is the Lost Foam casting process, which, after improvements over the past decades, including thanks to 3D technologies and adaptation to the use of the latest alloys, has the potential to ensure the growth of both stationary and mobile construction protective structures.
17

Deng, Jianming, Qian-shu Li, Yaoming Xie, R. Bruce King e H. F. Schaefer, III. "Binuclear hexafluorocyclopentadiene iron carbonyls: bis(dihapto) versus trihapto–monohapto bonding in iron–iron bonded structures". New Journal of Chemistry 37, n. 9 (2013): 2902. http://dx.doi.org/10.1039/c3nj00311f.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
18

Du Plessis, E., G. Kruger e J. de Villiers. "The crystal structures of the iron carbides". Acta Crystallographica Section A Foundations of Crystallography 61, a1 (23 agosto 2005): c407. http://dx.doi.org/10.1107/s0108767305082759.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
19

Farrell, D., Y. Cheng, S. Kan, M. Sachan, Y. Ding, S. A. Majetich e L. Yang. "Iron nanoparticle assemblies: structures and magnetic behavior". Journal of Physics: Conference Series 17 (1 gennaio 2005): 185–95. http://dx.doi.org/10.1088/1742-6596/17/1/026.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
20

Uspenskaya, L. S., D. S. L’vov, G. A. Penzyakov e O. V. Skryabina. "Nonreciprocity in Yttrium-Iron Garnet–Superconductor Structures". Physics of Metals and Metallography 121, n. 5 (maggio 2020): 423–28. http://dx.doi.org/10.1134/s0031918x20050129.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Beinert, H. "Iron-Sulfur Clusters: Nature's Modular, Multipurpose Structures". Science 277, n. 5326 (1 agosto 1997): 653–59. http://dx.doi.org/10.1126/science.277.5326.653.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
22

Harris, Hugh H., e Ian G. Dance. "Iron–carbon clusters: Geometric structures and interconversions". Polyhedron 26, n. 2 (gennaio 2007): 250–65. http://dx.doi.org/10.1016/j.poly.2006.05.005.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Paul Attfield, J., John F. Clarke e David A. Perkins. "Magnetic and crystal structures of iron borates". Physica B: Condensed Matter 180-181 (giugno 1992): 581–84. http://dx.doi.org/10.1016/0921-4526(92)90401-d.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
24

Zhao, G. L., J. Callaway e M. Hayashibara. "Electronic structures of iron and cobalt pyrites". Physical Review B 48, n. 21 (1 dicembre 1993): 15781–86. http://dx.doi.org/10.1103/physrevb.48.15781.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
25

Kelly, Anna T., Carly S. Filgueira, Desmond E. Schipper, Naomi J. Halas e Kenton H. Whitmire. "Gold coated iron phosphide core–shell structures". RSC Advances 7, n. 42 (2017): 25848–54. http://dx.doi.org/10.1039/c7ra01195d.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Core–shell Fe2P@Au particles were made from Fe2P particles by reaction with (1) γ-aminobutyric acid, (2) Au seeds and (3) HAuCl4 (aq.) and H2CO or CO with shells up to 65 ± 21 nm. Increasing shell thickness gave a red shift in the plasmonic resonance.
26

Teschke, O. "Spatial-temporal structures in iron electrodic reactions". Journal of Physics: Condensed Matter 5, n. 33A (16 agosto 1993): A201—A202. http://dx.doi.org/10.1088/0953-8984/5/33a/061.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
27

Dauscher, A., V. Feregotto, P. Cordier e A. Thomy. "Laser induced periodic surface structures on iron". Applied Surface Science 96-98 (aprile 1996): 410–14. http://dx.doi.org/10.1016/0169-4332(95)00495-5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
28

Zubov, V. E., G. S. Krinchik, V. N. Seleznyov e M. B. Strugatsky. "Near-surface magnetic structures in iron borate". Journal of Magnetism and Magnetic Materials 86, n. 1 (aprile 1990): 105–14. http://dx.doi.org/10.1016/0304-8853(90)90091-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
29

Stephani, G., O. Andersen, H. Göhler, C. Kostmann, K. Kümmel, P. Quadbeck, M. Reinfried, T. Studnitzky e U. Waag. "Iron Based Cellular Structures – Status and Prospects". Advanced Engineering Materials 8, n. 9 (settembre 2006): 847–52. http://dx.doi.org/10.1002/adem.200600078.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
30

Zheng, Heping, Karol M. Langner, Gregory P. Shields, Jing Hou, Marcin Kowiel, Frank H. Allen, Garib Murshudov e Wladek Minor. "Data mining of iron(II) and iron(III) bond-valence parameters, and their relevance for macromolecular crystallography". Acta Crystallographica Section D Structural Biology 73, n. 4 (31 marzo 2017): 316–25. http://dx.doi.org/10.1107/s2059798317000584.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
The bond-valence model is a reliable way to validate assumed oxidation states based on structural data. It has successfully been employed for analyzing metal-binding sites in macromolecule structures. However, inconsistent results for heme-based structures suggest that some widely used bond-valenceR0parameters may need to be adjusted in certain cases. Given the large number of experimental crystal structures gathered since these initial parameters were determined and the similarity of binding sites in organic compounds and macromolecules, the Cambridge Structural Database (CSD) is a valuable resource for refining metal–organic bond-valence parameters.R0bond-valence parameters for iron(II), iron(III) and other metals have been optimized based on an automated processing of all CSD crystal structures. Almost allR0bond-valence parameters were reproduced, except for iron–nitrogen bonds, for which distinctR0parameters were defined for two observed subpopulations, corresponding to low-spin and high-spin states, of iron in both oxidation states. The significance of this data-driven method for parameter discovery, and how the spin state affects the interpretation of heme-containing proteins and iron-binding sites in macromolecular structures, are discussed.
31

Višňovský, Štefan. "Magnetooptics in Cylindrical Structures". Applied Sciences 8, n. 12 (8 dicembre 2018): 2547. http://dx.doi.org/10.3390/app8122547.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Understanding magnetooptics in cylindrical structures presents interest in the development of magnetic sensor and nonreciprocal devices compatible with optical fibers. The present work studies wave propagation in dielectric circular cylindrical structures characterized by magnetic permeability and electric permittivity tensors at axial magnetization. The Helmholtz equations deduced from the Maxwell equations in transverse circularly polarized representation provide electric and magnetic fields. With the restriction to terms linear in off-diagonal tensor elements, these can be expressed analytically. The results are applied to magnetooptic (MO) circular cylindrical waveguides with a step refractive index profile. The nonreciprocal propagation is illustrated on waveguides with an yttrium iron garnet (YIG) core and a lower refractive index cladding formed by gallium substituted yttrium iron garnet (GaYIG) at the optical communication wavelength. The propagation distance required for the isolator operation is about one hundred micrometers. The approach may be applied to other structures of cylindrical symmetry in the range from microwave to optical frequencies.
32

Kurata, Hiroki, Kazuhiro Nagai, Seiji Isoda e Takashi Kobayashi. "ELNES of Iron Compounds". Proceedings, annual meeting, Electron Microscopy Society of America 48, n. 2 (12 agosto 1990): 28–29. http://dx.doi.org/10.1017/s0424820100133734.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Electron energy loss spectra of transition metal oxides, which show various fine structures in inner shell edges, have been extensively studied. These structures and their positions are related to the oxidation state of metal ions. In this sence an influence of anions coordinated with the metal ions is very interesting. In the present work, we have investigated the energy loss near-edge structures (ELNES) of some iron compounds, i.e. oxides, chlorides, fluorides and potassium cyanides. In these compounds, Fe ions (Fe2+ or Fe3+) are octahedrally surrounded by six ligand anions and this means that the local symmetry around each iron is almost isotropic.EELS spectra were obtained using a JEM-2000FX with a Gatan Model-666 PEELS. The energy resolution was about leV which was mainly due to the energy spread of LaB6 -filament. The threshole energies of each edges were measured using a voltage scan module which was calibrated by setting the Ni L3 peak in NiO to an energy value of 853 eV.
33

Al-Haik, M., C. C. Luhrs, M. M. Reda Taha, A. K. Roy, L. Dai, J. Phillips e S. Doorn. "Hybrid Carbon Fibers/Carbon Nanotubes Structures for Next Generation Polymeric Composites". Journal of Nanotechnology 2010 (2010): 1–9. http://dx.doi.org/10.1155/2010/860178.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Pitch-based carbon fibers are commonly used to produce polymeric carbon fiber structural composites. Several investigations have reported different methods for dispersing and subsequently aligning carbon nanotubes (CNTs) as a filler to reinforce polymer matrix. The significant difficulty in dispersing CNTs suggested the controlled-growth of CNTs on surfaces where they are needed. Here we compare between two techniques for depositing the catalyst iron used toward growing CNTs on pitch-based carbon fiber surfaces. Electrochemical deposition of iron using pulse voltametry is compared to DC magnetron iron sputtering. Carbon nanostructures growth was performed using a thermal CVD system. Characterization for comparison between both techniques was compared via SEM, TEM, and Raman spectroscopy analysis. It is shown that while both techniques were successful to grow CNTs on the carbon fiber surfaces, iron sputtering technique was capable of producing more uniform distribution of iron catalyst and thus multiwall carbon nanotubes (MWCNTs) compared to MWCNTs grown using the electrochemical deposition of iron.
34

Claros, Martha, Milena Setka, Yecid P. Jimenez e Stella Vallejos. "AACVD Synthesis and Characterization of Iron and Copper Oxides Modified ZnO Structured Films". Nanomaterials 10, n. 3 (5 marzo 2020): 471. http://dx.doi.org/10.3390/nano10030471.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Non-modified (ZnO) and modified (Fe2O3@ZnO and CuO@ZnO) structured films are deposited via aerosol assisted chemical vapor deposition. The surface modification of ZnO with iron or copper oxides is achieved in a second aerosol assisted chemical vapor deposition step and the characterization of morphology, structure, and surface of these new structured films is discussed. X-ray photoelectron spectrometry and X-ray diffraction corroborate the formation of ZnO, Fe2O3, and CuO and the electron microscopy images show the morphological and crystalline characteristics of these structured films. Static water contact angle measurements for these structured films indicate hydrophobic behavior with the modified structures showing higher contact angles compared to the non-modified films. Overall, results show that the modification of ZnO with iron or copper oxides enhances the hydrophobic behavior of the surface, increasing the contact angle of the water drops at the non-modified ZnO structures from 122° to 135° and 145° for Fe2O3@ZnO and CuO@ZnO, respectively. This is attributed to the different surface properties of the films including the morphology and chemical composition.
35

Rekha Kumari, Hariprasad Rao L, Gopinath T T e Pandiyan K R. "Investigation on Haematinic accessible Assortments and Measurable Structures available in Indian Markets". International Journal of Research in Pharmaceutical Sciences 11, SPL4 (25 dicembre 2020): 704–8. http://dx.doi.org/10.26452/ijrps.v11ispl4.4022.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
To investigate Haematinic definitions accessible in India arcade for their assortments of measurements structures, hard salts utilized, the substance of essential iron, recurrence of organization compulsory, the occurrence of extra supplements, levelheadedness and price. Haematinic details recorded in IDR 2018, were investigated for salts of Iron present. Arrangements of ferrous fumarate were additionally investigated for Iron substance, presence of folic corrosive and other included extra parts. A sum of 522 plans, 291 (55.74%) was oral strong measurement structure, 206 (39.46%) were oral fluids and 25 (4.7%) were parenteral. Iron salts in these details were in a type of ferrous fumarate, carbonyl iron, iron ascorbate, iron ammonium citrate, ferric hydroxide polymaltose perplexing, ferrous sulfate, sodium hydrate. Carbonyl iron was available in 92 arrangements and was most ordinarily utilized readiness in oral strong plans. A few details moreover contained Vitamin B12, zinc sulfate, histidine, lysine different multivitamins and calcium arrangements in factor extent. Out of 291 oral strong, 45 (15.46 %) arrangements required organization > three times each day to accomplish the remedial fixation. The normal expense of the sound planning was more than the normal expense of silly arrangement. Investigation of different haematinics shows there is no consistency in details. Iron and folic corrosive are included wide factor range in addition, different substances were additionally included with no very much demonstrated proof. Steps ought to be taken to normalize these details.
36

Baldokhin, Yuriy V., Yuriy D. Perfiliev e Leonid A. Kulikov. "Size effects in ultrafine iron. New structures: 2D - 3D". Nexo Revista Científica 34, n. 01 (13 aprile 2021): 13–23. http://dx.doi.org/10.5377/nexo.v34i01.11282.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
This article is devoted to the analysis of the size of iron nanoparticles impact on the structure, to comparison of the results obtained for the nanopowders in the various authors’ researches. The article considers factors that may impact on the form and parameters of the Mössbauer spectra of iron nanopowders obtained by the inert gas condensation technique (Gen-Miller’s method). Possible causes of the new state of the iron are proved with the effective magnetic field at the 57 Fe nucleus (H=365 kOe). But the results related to size effects differ from the researches of other authors. It was revealed that nanoparticles with a mean (X-ray data) particle size of 50 nm have also Angstrem patterns, which can meet the new structure. Presence of small amounts of superparamagnetic oxide could be a catalyst, impetus for the formation of the new structure, and also, at the exchange interactions, could modify the charge of the electron density at the Fe nuclei. Reviewed and other factors can result in appearing of such a high value of the effective magnetic field at the iron nuclei.
37

Zhang, Ming Huan, Qing Shao, Lu Yuan, Guang Wen Zhou e Yi Qian Wang. "Mechanism of the Oxidation of Iron". Advanced Materials Research 709 (giugno 2013): 106–9. http://dx.doi.org/10.4028/www.scientific.net/amr.709.106.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
A layered structure of different iron oxides was produced by thermal oxidation of iron. The structure and microstructure of different layers were examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Selected area electron diffraction (SAED) was used to identify the structures of the different oxide layers. Two different structures of Fe2O3were found to co-exist. Based on our observation, a possible oxidation mechanism for iron was proposed. The results shed light on the oxidation process of metals and provide insight into the synthesis of iron oxides.
38

Steiner, Margreet. "Iron Age Cultic Sites in Transjordan". Religions 10, n. 3 (27 febbraio 2019): 145. http://dx.doi.org/10.3390/rel10030145.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
In the area east of the river Jordan, eight Iron Age structures identified as cultic have been excavated. This paper presents the evidence as published and discusses the relevance of the cultic identification of the structures.
39

Pechlivani, E. M., e F. Stergioudis. "Commensurability of the Structures of Boride Layers". Key Engineering Materials 495 (novembre 2011): 181–84. http://dx.doi.org/10.4028/www.scientific.net/kem.495.181.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
The interaction of solid NH4HCO3 with iron, where the ammonia product has been adsorbed nondissociatively to iron surfaces at low temperatures [1] was investigated. The nitride clusters formed on steel substrates modified the surface morphology and characteristics of the substrate and influenced their adhesion during subsequent procedure of coating. In our case, efforts were made to decorate the steel substrate in order to influence the base metal reactivity towards boron and its ability to react and form stable compounds with boron [2]. Boride layers on steel are examined by means of SEM and XRD analysis. The decorated surface was observed by FTIR method.
40

Wang, Jun, Jun-Wei Zhao, Hai-Yan Zhao, Bai-Feng Yang, Huan He e Guo-Yu Yang. "Syntheses, structures and properties of two multi-iron–samarium/multi-iron substituted germanotungstates". CrystEngComm 16, n. 2 (2014): 252–59. http://dx.doi.org/10.1039/c3ce42023j.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
41

Schultz, Richard H., e P. B. Armentrout. "Threshold collisional activation of FeC2H6+: iron(1+)-ethane vs. iron(1+)-dimethyl structures". Journal of Physical Chemistry 96, n. 4 (febbraio 1992): 1662–67. http://dx.doi.org/10.1021/j100183a031.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
42

Yoshimura, S., S. Yoshihara, T. Shirakashi, E. Sato e K. Ishii. "Magnetic Properties and Structures of Electrodeposited Iron Films." Journal of the Magnetics Society of Japan 18, n. 2 (1994): 281–84. http://dx.doi.org/10.3379/jmsjmag.18.281.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
43

Barge, Laura M., Ivria J. Doloboff, Lauren M. White, Galen D. Stucky, Michael J. Russell e Isik Kanik. "Characterization of Iron–Phosphate–Silicate Chemical Garden Structures". Langmuir 28, n. 8 (16 novembre 2011): 3714–21. http://dx.doi.org/10.1021/la203727g.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
44

Wang Zhi-Cheng e Cao Guang-Han. "Self-doped iron-based superconductors with intergrowth structures". Acta Physica Sinica 67, n. 20 (2018): 207406. http://dx.doi.org/10.7498/aps.67.20181355.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
45

Yoshimura, S., S. Yoshihara, T. Shirakashi, E. Sato e K. Ishii. "Magnetic Properties and Structures of Electrodeposited Iron Films". IEEE Translation Journal on Magnetics in Japan 9, n. 5 (settembre 1994): 112–17. http://dx.doi.org/10.1109/tjmj.1994.4565933.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
46

Zhang, Rui, Wei Fan, Brendan Twamley, David J. Berg e Reginald H. Mitchell. "Synthesis and Structures of Dimethyldihydropyrene Iron Carbonyl Complexes". Organometallics 26, n. 8 (aprile 2007): 1888–94. http://dx.doi.org/10.1021/om0700112.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
47

Qi, Li, Shidong Feng, Na Xu, Mingzhen Ma, Qin Jing, Gong Li e Riping Liu. "Pressure-induced Structures and Structural Evolution in Iron". Materials Research 18, suppl 1 (17 novembre 2015): 78–82. http://dx.doi.org/10.1590/1516-1439.327014.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
48

Redrup, Kate V., e Mark T. Weller. "Synthesis and crystal structures of iron hydrogen phosphates". Dalton Transactions, n. 19 (2009): 3786. http://dx.doi.org/10.1039/b902519g.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
49

Kabir, M. K., N. Miyazaki, S. Kawata, K. Adachi, H. Kumagai, K. Inoue, S. Kitagawa, K. Iijima e M. Katada. "Novel layered structures constructed from iron–chloranilate compounds". Coordination Chemistry Reviews 198, n. 1 (marzo 2000): 157–69. http://dx.doi.org/10.1016/s0010-8545(00)00232-0.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
50

Lii, Kwang-Hwa, Yuh-Feng Huang, Vítezslav Zima, Chih-Yuan Huang, Hsiu-Mei Lin, Yau-Chen Jiang, Fen-Ling Liao e Sue-Lein Wang. "Syntheses and Structures of Organically Templated Iron Phosphates". Chemistry of Materials 10, n. 10 (ottobre 1998): 2599–609. http://dx.doi.org/10.1021/cm980152h.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Vai alla bibliografia