Letteratura scientifica selezionata sul tema "Intumescent coating"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Intumescent coating".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Articoli di riviste sul tema "Intumescent coating"

1

Martynov, A. V., e O. V. Popova. "Methodology to Determine Expansion Rate, Strength, and Adhesion of Protective Coating Produced Based on Formed Coked Form". Occupational Safety in Industry, n. 9 (settembre 2024): 66–73. http://dx.doi.org/10.24000/0409-2961-2024-9-66-73.

Testo completo
Abstract (sommario):
Today, the production volumes of intumescent paints comprise a significant part of the entire fire-protection production. At the same time, both uncertified and low-quality products can be often offered within the segment. The main implicit factors of the violation of the intumescent coating quality are the thickness of the layer and the degree of dilution of ready-to-use paint immediately before use. These factors affect the quality of coked foam, i.e., its layer thickness and its density; however, these cannot be detected during the external examination of the paint layer, measuring its thickness and conditional adhesion in accordance with modern standards. The reliability of the results of intumescent coating fire-retardant properties evaluation can only be ensured considering the evaluation of additional parameters of coked foam (strength and homogeneity) applied to protected structures measured in conditions close to real fire conditions. A methodology of express analysis of intumescent coatings on steel structures has been considered; the analysis aims to determine the expansion rate, strength, and adhesion of protective coating produced based on formed coked foam. The methodology is based on the theoretical studies of the effects of intumescent paint parameters (layer thickness, degree of dilution) on coked foam parameters and contains non-standard methods of intumescent fire-protection parameters. The intumescent coating spot heating method at sampling sites has been developed; the efficiency of the penetromety method to determine the coked foam strength has been proved. These methods are simple and do not require using any expensive equipment. The methodology can be applied to evaluate the fire-retardant coating directly at a construction site by the following parameters: coked foam intumescence, homogeneity of its structure, ultimate strength in compression, and shear-breakout. It has been established that high values of the intumescence coefficient do not guarantee the reliability of fire protection. The higher the intumescence coefficient is, the lower the thickness and strength of the coked foam. Considering this interdependence of parameters, it is reasonable to establish, on a regulatory basis, the ultimate values of the coked foam intumescence coefficient.
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Martynov, A. V., O. V. Popova e V. V. Grekov. "Non-Standard Methods for Assessing the Quality of Intumescent Coatings". Occupational Safety in Industry, n. 6 (giugno 2021): 15–20. http://dx.doi.org/10.24000/0409-2961-2021-6-15-20.

Testo completo
Abstract (sommario):
The main most frequently used structural materials are monolithic reinforced concrete, steel profiles and lightweight thin-walled building structures, which in case of fire at temperatures above 500 °C lose their mechanical properties, deform, and collapse. To protect the load-bearing structures from dangerous deformations for a certain time before the start of extinguishing a fire, various fire-retardant materials are used, among which thin-layer intumescent coatings occupy a special place. Serious problems with the quality of intumescent coatings are associated with the use by manufacturers of paint components (often counterfeit products of low quality) that do not correspond to those stated in the certificates. In these cases, the intumescent coating does not guarantee the formation of a high-quality protective layer of the coke foam in case of fire. Standard methods for assessing the quality of such coatings allow to assess appearance, thickness, and adhesion of the coating prior to coke foam formation. However, it is required to check directly on the object the additional non-standard parameters of the intumescent coatings: intumescence coefficient, appearance and strength of the coke foam. Ways are described related to the implementation of measuring the structural and mechanical properties of the coke foam: intumescence coefficient, penetration and shear-breakout strength. It is proposed to measure the strength characteristics of the coke foam by the penetrometry method on an original installation (analogue of a cone penetrometer). The proposed measurement method is simple, demonstrative and does not require expensive equipment. The dependence is revealed concerning the strength of the coke foam on its density, which is determined by the intumescence coefficient at all other things being equal. The higher the intumescence coefficient, the lower the density and strength of the coke foam. Therefore, high values of the intumescence coefficient do not guarantee the reliability of fire protection. It is recommended to set normatively limit values for the intumescence coefficient, which will differ for different compositions of the intumescent paints.
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Häßler, Mai, Dustin Häßler, Sascha Hothan e Simone Krüger. "Fire tests of steel tension rod systems with intumescent coating". Journal of Structural Fire Engineering 11, n. 1 (5 agosto 2019): 22–32. http://dx.doi.org/10.1108/jsfe-01-2019-0005.

Testo completo
Abstract (sommario):
Purpose The purpose of this paper is to investigate the performance of intumescent coating on tension rod systems and their components. Steel tension rod systems consist of tension rods, fork end connectors and associated intersection or gusset plates. In case of fire, beside the tension rods themselves, the connection parts require appropriate fire protection. Intumescent fire protection coatings prevent a rapid heating of the steel and help secure the structural load-carrying capacity. Because the connection components of tension rod systems feature surface curvature and a complex geometry, high demand is placed on the intumescence and thermal protection performance of the coatings. Design/methodology/approach In this paper, experimental studies were carried out for steel tension rod systems with intumescent coating. The examined aspects include the foaming and cracking behaviour, the influence of different dry film thicknesses, the heating rate of the steel connecting parts in comparison to the tension rods, and the mounting orientation of the tension rods together with their fork end connectors. Findings The results show that a decrease in surface curvature and/or an increase in mass concentration of the steel components leads to a lower heating rate of the steel. Moreover, the performance of the intumescent coating on tension rod systems is influenced by the mounting orientation of the steel components. Originality/value The findings based on fire tests contribute to a better understanding of the intumescent coating performance on connection components of tension rod systems. This subject has not been extensively studied yet.
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Çırpıcı, Burak Kaan, Süleyman Nazif Orhan e Türkay Kotan. "Numerical modelling of heat transfer through protected composite structural members". Challenge Journal of Structural Mechanics 5, n. 3 (11 settembre 2019): 96. http://dx.doi.org/10.20528/cjsmec.2019.03.003.

Testo completo
Abstract (sommario):
Among many various types of passive fire protection materials (i.e. plaster boards, sprayed materials and intumescent coatings) thin film intumescent coatings have become the preferable option owing to their good advantages such as flexibility, good appearance (aesthetics), light weight to the structure and fast application. Despite their popularity, there is also a lack of good understanding of fire behaviour. In general, experimental methods are used to push this knowledge with labour and high-energy consumption and extremely expensive processes. With the development of computer technology, numerical models to predict the heat transfer phenomena of intumescent coatings have been developed with time. In this work, the numerical model has been established to predict the heat transfer performance including material properties such as thermal conductivity and dry film thickness of intumescent coating. The developed numerical model has been divided into different layers to understand the sensitivity of steel temperature to the number of layers of intumescent coating and mesh sizes. The temperature-dependent thermal conductivity of intumescent coatings can be calculated based on inverse solution of the equation for calculating temperatures in protected steel according to the Eurocodes (EN 1993-1-2 and EN 1994-1-2). However, as the temperature distribution in the intumescent coatings is highly non-uniform, that Eurocode equation does not give accurate coating thermal conductivity-temperature relationship for use in numerical heat transfer modelling when the coating is divided into a number of layers, each having its characteristic thermal conductivity values. The comparison study of steel temperature under Standard (ISO 834) and Fast fire conditions against Eurocode analytical solution has also been made by assuming both constant thermal conductivity and variable thermal conductivity. The obtained results show close agreement with the Eurocode solution choosing a minimum certain mesh, number of layer and best-fitted thermal conductivity of the intumescent coating.
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Li, GQ, Jun Han e Yong C. Wang. "Constant effective thermal conductivity of intumescent coatings: Analysis of experimental results". Journal of Fire Sciences 35, n. 2 (1 febbraio 2017): 132–55. http://dx.doi.org/10.1177/0734904117693857.

Testo completo
Abstract (sommario):
This article presents the results of an investigation to obtain the constant effective thermal conductivities of intumescent coatings under the influence of different intumescent coating factors (type of intumescent coating, coating thickness, steel section factor, fire condition), based on the analysis of an extensive collection of fire test data. The constant effective thermal conductivity is not a fundamental property of the intumescent coating, but is a desired quantity for simplified practical fire resistance design. It is defined as the temperature-averaged value of the temperature-dependent effective thermal conductivity within the temperature range of interest for fire resistance design of steel structures. The results indicate that for each of the intumescent coating types examined, a consistent constant effective thermal conductivity exists. The constant effective thermal conductivity tends to increase with decreasing steel section factor and to decrease with increasing coating thickness. For intumescent coating–protected steel I-sections, incorporating the shadow effect gives more consistent values of constant thermal conductivity compared to those without accounting for the effect. The same constant effective thermal conductivity obtained from the ISO fire tests may be used for different fire conditions as long as the steel temperature is higher than 400 °C. The results of this research make it possible to develop a simple method to calculate temperatures of intumescent coating–protected steel sections under different fire conditions.
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Piperopoulos, Elpida, Giuseppe Scionti, Mario Atria, Luigi Calabrese, Antonino Valenza e Edoardo Proverbio. "Optimizing Ammonium Polyphosphate–Acrylic Intumescent Coatings with Sustainable Fillers for Naval Fire Safety". Materials 17, n. 21 (26 ottobre 2024): 5222. http://dx.doi.org/10.3390/ma17215222.

Testo completo
Abstract (sommario):
This study explores the potential of natural and recycled materials to enhance the fire behavior of eco-friendly intumescent coatings, compared to a traditional ammonium polyphosphate (APP)-based one. To achieve this, cork, halloysite clay, and recycled glass were evaluated as natural fillers and sustainable components within the coating formulation. The aim was to reduce the reliance on synthetic materials and minimize the environmental impact while maintaining fire performance. Fire exposure tests were conducted to assess the in situ char formation and its relationship to the heat source and char foaming process. The results highlighted that all functionalized coatings exhibited suitable intumescent behavior. The best results were evidenced by cork-filled coating that evidenced an intumescent capacity about 40% higher than the traditional ammonium polyphosphate (APP)-based one. This provided valuable insights into the coating’s real-time response to fire, determining its suitability for various fire-resistant applications.
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Hussain, Atif, Véronic Landry, Pierre Blanchet, Doan-Trang Hoang e Christian Dagenais. "Fire Performance of Intumescent Waterborne Coatings with Encapsulated APP for Wood Constructions". Coatings 11, n. 11 (20 ottobre 2021): 1272. http://dx.doi.org/10.3390/coatings11111272.

Testo completo
Abstract (sommario):
In this work, intumescent coatings were prepared for protection of wood from fire. The fire-retardant chemical ammonium polyphosphate (APP) is known to have poor resistance to water and high humidity as it is hygroscopic in nature. To improve the water resistance, durability and fire resistance of the intumescent coating, APP was modified using a hybrid organic-inorganic polysiloxane encapsulation shell prepared by the sol–gel method. The physical and chemical properties of the intumescent mix containing microencapsulated ammonium polyphosphate (EAPP) particles were characterized by X-ray fluorescence (XRF), Fourier transform infrared spectroscopy (FTIR), water absorption, dynamic vapor sorption (DVS) and thermogravimetric analysis (TGA). The EAPP mix showed 50% reduction in water absorption, 75% reduction in water vapor sorption and increased thermal stability when compared to the APP mix. The intumescent coatings were applied on wood samples, and their fire performance was evaluated using a cone calorimeter test. The intumescent coatings containing EAPP mix showed better fire retarding properties with longer time to ignition, lower heat release rate and shorter heat release peak when compared to the coating without EAPP mix. The prepared intumescent coating shows higher resistance to water and moisture, and it has great potential to be used in bio-based construction industry for enhancing the fire resistance of wood.
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Yew, M. C., N. H. Ramli Sulong, M. K. Yew, M. A. Amalina e M. R. Johan. "Fire Propagation Performance of Intumescent Fire Protective Coatings Using Eggshells as a Novel Biofiller". Scientific World Journal 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/805094.

Testo completo
Abstract (sommario):
This paper aims to synthesize and characterize an effective intumescent fire protective coating that incorporates eggshell powder as a novel biofiller. The performances of thermal stability, char formation, fire propagation, water resistance, and adhesion strength of coatings have been evaluated. A few intumescent flame-retardant coatings based on these three ecofriendly fire retardant additives ammonium polyphosphate phase II, pentaerythritol and melamine mixed together with flame-retardant fillers, and acrylic binder have been prepared and designed for steel. The fire performance of the coatings has conducted employing BS 476: Part 6-Fire propagation test. The foam structures of the intumescent coatings have been observed using field emission scanning electron microscopy. On exposure, the coated specimens’ B, C, and D had been certified to be Class 0 due to the fact that their fire propagation indexes were less than 12. Incorporation of ecofriendly eggshell, biofiller into formulation D led to excellent performance in fire stopping (index value,(I)=4.3) and antioxidation of intumescent coating. The coating is also found to be quite effective in water repellency, uniform foam structure, and adhesion strength.
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Amir, Norlaili, Faiz Ahmad e Puteri S. M. Megat Yusoff. "Char Strength of Wool Fibre Reinforced Epoxy-Based Intumescent Coatings (FRIC)". Advanced Materials Research 626 (dicembre 2012): 504–8. http://dx.doi.org/10.4028/www.scientific.net/amr.626.504.

Testo completo
Abstract (sommario):
Fire protective intumescent coating cannot insulate a base material effectively if its char lacks mechanical strength. This research therefore, studied the effects of fibre reinforcement to epoxy-based intumescent coatings char strength. The fibres used include glass wool fibre, Rockwool fibre and ceramic wool fibre of 10mm length. The three formulations mechanical performances were compared to both, a famous commercial intumescent coating and a control formulation without fibre. These coatings were fire tested up to 800°C in an electric furnace for an hour. Their chars mechanical properties were evaluated for char resistance test using predetermined weight loads. In the test, masses from 100g to 3600g were loaded continuously on top of the chars where the fibre reinforced intumescent coating (FRIC) has shown better strength and resistance to deformation. As a result, they produced lower percentage of height reduction i.e. 34% - 83% different when compared to unreinforced coating. Control char also ruptured at as low as 4N load. It was deduced that fire insulative wool fibres are effective reinforcement for improved char strength of the FRIC.
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Vasilchenko, Alexey, Yuriy Otrosh, Nikolay Adamenko, Evgeny Doronin e Andrey Kovalov. "Feature of fire resistance calculation of steel structures with intumescent coating". MATEC Web of Conferences 230 (2018): 02036. http://dx.doi.org/10.1051/matecconf/201823002036.

Testo completo
Abstract (sommario):
The problem of estimation of fire resistance of steel frame structures with intumescent coatings is considered. It implies that both physical properties of a covering (its thickness and structure) and mechanical properties of a metal structure change critically at heating. All above changes should be considered to maintain the standard values of fire resistance of a construction at calculation. Usually, known technical characteristics of fire resistance of intumescent coverings are used for estimation of fire resistance of steel structures with intumescent coverings. Importance of taking into account the influence of strength loss time at heating of a steel structure on calculation of fire resistance limit of system “intumescent fireproof coating steel structure” is shown in the article. On an example of calculation of heating time to the critical temperature of steel columns and beams protected by intumescent coating, it is shown that own heating time of steel structures before they lose strength makes 10 to 16 % from a settlement limit of fire resistance. This fact should be considered at the forecast of fire resistance of steel frame structures with intumescent coatings.
Gli stili APA, Harvard, Vancouver, ISO e altri
Più fonti

Tesi sul tema "Intumescent coating"

1

Cirpici, Burak Kaan. "Simulating the expansion process of intumescent coating fire protection". Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/simulating-the-expansion-process-of-intumescent-coating-fire-protection(6de4a5f5-0fb7-4d28-a083-9c783c692e4c).html.

Testo completo
Abstract (sommario):
The expansion ratio (defined as the ratio of the expanded thickness to the original thickness) of intumescent coatings is the most important quantity that determines their fire protection performance. This thesis explores two possible methods of predicting intumescent coating expansion: an analytical method, and a detailed numerical simulation method using Smoothed Particle Hydrodynamics (SPH).The analytical method is based on a cell-model and predicts bubble growth due to pressure increase in viscous liquid with constant viscosity. It has been extended to non-uniform temperature field and temperature-dependent viscosity of intumescent melt. Accuracy of this extended analytical method is assessed by comparison against the cone calorimeter and furnace fire tests on intumescent coating protected steel plates with different intumescent coating thicknesses, steel plate thicknesses, and heating conditions. The extended analytical method is then used to investigate how intumescent coating expansion and intumescent coating effective thermal conductivity are affected by changing the coating thickness, the steel thickness and the fire condition (including smouldering fire). The main conclusion is that the expansion ratio decreases as the rate of heating increases. Therefore, the intumescent coating properties obtained from the Standard fire exposure may be safely used for slower realistic fires, but would produce unsafe results for faster fires. The second method explores the potential of a meshless numerical simulation: Smoothed Particle Hydrodynamics (SPH). SPH modelling of intumescent coating expansion has been implemented using the SPHysics FORTRAN open-source code as a platform. To check the validity of this modelling method, the modelling results are compared against theoretical solutions for surface tension (Young-Laplace theorem), and available numerical and analytical solutions for bubble expansion. A new algorithm for representing the mass transfer of gas into the bubble using SPH particle insertion and particle shifting scheme is presented to simulate the bubble expansion process. Close agreement with an analytical solution for the initial bubble expansion rate computed by SPH is obtained. Whilst this research has demonstrated the potential of using SPH to numerically simulate intumescent coating expansion, it has also revealed significant challenges that should be overcome to make SPH a feasible method to simulate intumescent coating expansion. The main challenges include:• Simulating gas-polymer flows when expansion is occurring where there are vastly different properties of these two fluids with a density ratio of about 1000. This high density ratio may easily cause numerical pressure noise, especially at the liquid-gas interface.• Extremely high computational cost necessary to achieve sufficient accuracy by using a large number of particles (higher resolution), especially for the multi-phase SPH program, and very small time step for the lighter fluid (air). • The behaviour of intumescent coatings involves expansion ratios on the order of 10-100 with thousands of bubbles which grow, merge and burst. Based on the results of this exploratory research, future improvements are outlined to further develop the SPH simulation method.
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Yuan, Jifeng. "Intumescent coating performance on steel structures under realistic fire conditions". Thesis, University of Manchester, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.498956.

Testo completo
Abstract (sommario):
Intumescent coating, as a new generation of fire proof material, has obvious advantages over traditional fire protection materials. The applications of intumescent coating are widely ranged and it has become dominant in the fire engineering market. However, the present method of assessment in EN 13381 Part 4 is not suitable for applications of intumescent coating under realistic fire conditions, because intumescent coating behaviour is not only temperature dependent, but also fire exposure dependent. The failure of currently available method to give accurate predictions of intumescent coating thermal performance motivated this research. Against this background, a 1-0 mathematical model has been established to consider chemical kinetics, mass and energy conservation, and heat transfer through solid and gas phases. The model couples the degradation of three basic components (inorganic acid source, blowing agent, and charring material) with a variable volume system. Basic volatile mass transfer and simplified bubbling mechanisms have been described in assistance to calculate the non-linear distribution of temperature along the coating thickness. The model is presented in terms of Finite Difference Method (FOM) equations and is solved using FORTRAN programming. Then, an extensive sensitivity study has been carried out to identify most influential parameters among a large number of material input data required by the mathematical model. A. The activation energies of the blowing agent and the charring material, the maximum expansion coefficient and the final bubble size have been shown to have the most influence on the predicted steel temperature results. To assess the influence of different pore size distributions, Finite Element simulations (ABAQUS) were performed. The results of this numerical study indicate that, given the same porosity, the overall thermal conductivity of the porous structure is very close to that with uniform distribution of pores of the dominant size. This strongly suggests that, given the difficulty of obtaining precise pore size distribution, it is practically acceptable to treat an intumescent coating as having a uniform distribution of pores of the same size. A number of cone-calorimeter tests have been carried out with different coating thicknesses, steel substrate thicknesses, and external heat fluxes. The investigation focused on how to extract key parameters of the model from limited number of experimental tests, and how to make use of the model in different applications. The estimated input parameters are able to predict all the cone calorimeter tests to match the experimental measurement with reasonably good agreement, which demonstrates the feasibility of the modelling approach. Finally, to provide comprehensive validation, both standard and parametric furnace fire tests have been performed. The key parameters of chemical kinetics and intumescent char bubble size were determined experimentally. The TGA test data were used to obtain the major intumescent coating component fractions and the various chemical kinetics constants. The mathematical model described in this study is able to accurately predict both the standard fire test results and the parametric fire test results. The only requirement is that the final expansion coefficient of the intumescent coating should be provided as input data.
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Gardelle, Bastien. "Development and resistance to fire of intumescent silicone based coating : fire protection of steel in simulated fire". Thesis, Lille 1, 2013. http://www.theses.fr/2013LIL10079/document.

Testo completo
Abstract (sommario):
L'objectif de ce travail de thèse est de développer des revêtements intumescents à base de résines de silicone pour la protection de l'acier en cas d’incendie. Les revêtements intumescents ont pour fonction d'assurer l'intégrité des structures en acier exposées au feu, ce métal perdant une grande partie de ses propriétés mécaniques au-dessus de 550°C. Les revêtements intumescents classiquement utilisés sont formulés à partir de résines organiques ce qui conduit à certaines limitations. Dans ce travail, des revêtements intumescents hybrides organiques-inorganiques à base de résines de silicone ont donc été développés. Dans un premier temps, il est montré que les résines silicones de types RTV (room temperature vulcanized) présentent les meilleures propriétés de barrière thermique. Par la suite, du graphite expansible a été incorporé en tant qu’agent gonflant à la résine silicone, pour permettre l'expansion du revêtement à haute température. Grâce à des interactions spécifiques entre le silicone et le graphite expansé, le revêtement obtenu présente d'excellentes propriétés de protection thermique. Ces résultats ont été attribués à ses propriétés de gonflement, à sa faible conductivité thermique à haute température et à la bonne cohésion du char développé. Des charges minérales supplémentaires ont ensuite été incorporées dans la formulation afin d'augmenter les propriétés mécaniques du char. Enfin, les paramètres essentiels régissant les propriétés de barrières thermiques des revêtements siliconés ont été mises en évidence. En jouant sur ces paramètres, il est possible de formuler des revêtements performants pour la protection de l'acier au cours d'un incendie
The purpose of this Ph.D work is to develop intumescent coatings for the protection of steel against fire. The aim of this coating is to ensure the integrity of steel structure exposed to fire since steel loses more than 50% of its load capacity above 550°C. Intumescent coatings expand in case of fire leading to the formation of an insulative barrier limiting the heat transfer from the heat source to the substrate. Most of these coatings are organic based and thus exhibit some limitations. Thus, in this work, hybrid organic-inorganic coatings based on silicone resins were developed. In a first step, it is shown that room temperature vulcanized silicone rubber is the silicone matrix exhibiting the best insulative properties in fire scenarios. Expandable graphite is then used as blowing agent to make the silicone swell when exposed to fire. Due to several interactions between silicone and expandable graphite at high temperature, the coating exhibits excellent fire performance. This performance was attributed to the swelling properties, the low thermal conductivity at high temperature and the good cohesion of the developed char. Additional fillers such as calcium carbonate and organoclay are incorporated in the formulation to increase the mechanical properties of the char. Finally, the critical parameters governing the insulative properties of intumescent silicone coatings have been determined. Moreover, it was pointed out that it is possible to develop silicone coatings exhibiting better fire performance than commercial intumescent paint for the protection of steel against fire in both hydrocarbon and cellulosic fire scenarios
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Gardelle, Bastien. "Development and resistance to fire of intumescent silicone based coating : fire protection of steel in simulated fire". Electronic Thesis or Diss., Lille 1, 2013. http://www.theses.fr/2013LIL10079.

Testo completo
Abstract (sommario):
L'objectif de ce travail de thèse est de développer des revêtements intumescents à base de résines de silicone pour la protection de l'acier en cas d’incendie. Les revêtements intumescents ont pour fonction d'assurer l'intégrité des structures en acier exposées au feu, ce métal perdant une grande partie de ses propriétés mécaniques au-dessus de 550°C. Les revêtements intumescents classiquement utilisés sont formulés à partir de résines organiques ce qui conduit à certaines limitations. Dans ce travail, des revêtements intumescents hybrides organiques-inorganiques à base de résines de silicone ont donc été développés. Dans un premier temps, il est montré que les résines silicones de types RTV (room temperature vulcanized) présentent les meilleures propriétés de barrière thermique. Par la suite, du graphite expansible a été incorporé en tant qu’agent gonflant à la résine silicone, pour permettre l'expansion du revêtement à haute température. Grâce à des interactions spécifiques entre le silicone et le graphite expansé, le revêtement obtenu présente d'excellentes propriétés de protection thermique. Ces résultats ont été attribués à ses propriétés de gonflement, à sa faible conductivité thermique à haute température et à la bonne cohésion du char développé. Des charges minérales supplémentaires ont ensuite été incorporées dans la formulation afin d'augmenter les propriétés mécaniques du char. Enfin, les paramètres essentiels régissant les propriétés de barrières thermiques des revêtements siliconés ont été mises en évidence. En jouant sur ces paramètres, il est possible de formuler des revêtements performants pour la protection de l'acier au cours d'un incendie
The purpose of this Ph.D work is to develop intumescent coatings for the protection of steel against fire. The aim of this coating is to ensure the integrity of steel structure exposed to fire since steel loses more than 50% of its load capacity above 550°C. Intumescent coatings expand in case of fire leading to the formation of an insulative barrier limiting the heat transfer from the heat source to the substrate. Most of these coatings are organic based and thus exhibit some limitations. Thus, in this work, hybrid organic-inorganic coatings based on silicone resins were developed. In a first step, it is shown that room temperature vulcanized silicone rubber is the silicone matrix exhibiting the best insulative properties in fire scenarios. Expandable graphite is then used as blowing agent to make the silicone swell when exposed to fire. Due to several interactions between silicone and expandable graphite at high temperature, the coating exhibits excellent fire performance. This performance was attributed to the swelling properties, the low thermal conductivity at high temperature and the good cohesion of the developed char. Additional fillers such as calcium carbonate and organoclay are incorporated in the formulation to increase the mechanical properties of the char. Finally, the critical parameters governing the insulative properties of intumescent silicone coatings have been determined. Moreover, it was pointed out that it is possible to develop silicone coatings exhibiting better fire performance than commercial intumescent paint for the protection of steel against fire in both hydrocarbon and cellulosic fire scenarios
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Krishnamoorthy, Renga Rao. "The analysis of partial and damaged fire protection on structural steel at elevated temperature". Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/the-analysis-of-partial-and-damaged-fire-protection-on-structural-steel-at-elevated-temperature(de0ddd3a-7256-439c-af53-68aeb521c5d9).html.

Testo completo
Abstract (sommario):
Intumescent coating fire protection on steel structures is becoming widely popular in the UK and Europe. The current assessment for the fire protection performance method using the standard fire resistance tests is not accurate, owing to the reactive behaviour of intumescent coating at elevated temperature. Moreover, the available intumescent coating temperature assessment method provided in the Eurocode for structural steel at elevated temperature does not incorporate the steel beam's behaviour and/or assessment for partial protection and/or damaged protection. The research work presented provides additional information. on the assessment of partial and/or damaged intumescent coating at elevated temperature. In the scope of the investigation on the thermal conductivity of intumescent coating, it was found that the computed average thermal conductivity was marginally sensitive to the density and emissivity at elevated temperature. However, the thermal conductivity was found to be reasonably sensitive to the differences in initial dft's (dry film thicknesses). In this research, a numerical model was developed using ABAQUS to mimic actual indicative test scenarios to predict and establish the temperature distribution and the structural fire resistance of partial and/or damaged intumescent coating at elevated temperatures. Intumescent coating actively shields when the charring process occurs when the surface temperature reaches approximately 250°C to 350°C. Maximum deflection and deflection failure times for each damage scenario were analyzed by applying specified loading conditions. It was also found that the structural fire resistance failure mode of intumescent coating on protected steel beams was particularly sensitive to the applied boundary conditions. Careful selection of nodes in the element was necessary to avoid numerical instability and unexpected numerical error during analysis. An assessment of various numerical models subjected to a-standard fire with partially protected 1 mm intumescent coating was analysed using ABAQUS. An available unprotected test result was used as a benchmark. The outcome suggests that the fire resistances of the beams were found to be sensitive to the location of the partial and/or damage protection. The overall fire resistance behaviour of intumescent coating at elevated temperature was summarized in a 'typical deflection regression' curve. An extensive parametric analysis was performed on localized intumescent coating damage with various intumescent coating thicknesses between 0.5mm to 2.0mm. It was found that the average deflection was linear for the first 30 mins of exposure for all the variables, damage locations and intumescent thicknesses. It was concluded that a thicker layered intumescent coating may not be a better insulator or be compared to a much less thick intumescent coating at elevated temperature. The use of passive fire protection, however, does enhance the overall fire resistance of the steel beam, in contrast to a naked steel structure. The research work investigated the intumescent coating behaviour with different aspects of protection and damage and the outcome of the assessment provided a robust guide and additional understanding of the performance of intumescent coating at elevated temperature.
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Verret, Éric. "Optimisation des systèmes de protection incendie par machine learning : Application aux systèmes intumescents". Electronic Thesis or Diss., Centrale Lille Institut, 2024. http://www.theses.fr/2024CLIL0033.

Testo completo
Abstract (sommario):
L'optimisation est un élément majeur en science des matériaux et est particulièrement importante dans le développement de formulations complexes, comme par exemple les formulations retardatrices de flamme. Ce travail de thèse se concentre sur le développement d'une méthode d'optimisation active basée sur une technique de machine learning appelée Optimisation Bayésienne (BO). Parmi les différents types de systèmes retardateurs de flamme, les systèmes intumescents suscitent un grand intérêt et ont fait l’objet de cette étude. Nous avons étudié deux systèmes complexes : une formulation intumescente à base de polypropylène (PP) et un revêtement intumescent applicables à des substrats de type bois. Pour le système à base de PP, une approche d’ignifugation en masse i.e. par ajout d’additif a été choisie. L’optimisation a été menée selon deux approches: (a) une approche mono-objective visant à optimiser uniquement le Pouvoir Calorifique Superieur (PCS) obtenue à partir du Bombe calorimètre, et (b) une approche multi-objective visant à optimiser à la fois l'indice limite d'oxygène (LOI) et la teneur en additifs dans la formulation. Dans le cas du revêtement intumescent, plusieurs paramètres incluant la chaleur totale libérée (THR) mesurée par le cône calorimètre en position horizontal, et la vitesse de perte de masse, mesuré en position verticale ont été optimisés. Un test à petite échelle permettant de mesurer le flux de chaleur critique à l'extinction (CFE) a également été utilisé pour mesurer la propagation des flammes. D’autre part, une segmentation d'image basée sur du machine a été appliquée pour évaluer le front de dégradation. Cette étude a permis de démontrer dans les cas d’études, la pertinence de l’OB en science des matériaux
Optimization is a major element in materials science and is particularly important in the development of complex formulations, such as flame-retardant formulations. This PhD thesis focuses on the development of an active optimization method based on a machine learning technique called Bayesian Optimization (BO). Among the different types of flame-retardant systems, intumescent systems are of great interest and were the focus of this study. We studied two complex systems: a polypropylene (PP)-based intumescent formulation and an intumescent coating applicable to wood-type substrates. For the PP-based system, additives were added to the polymer matrix through melt blending. Optimization was carried out using two approaches: (a) a mono-objective approach aiming at optimizing only the higher heating value (HHV) obtained from the Calorimeter Bomb, and (b) a multi-objective approach aiming at optimizing both the limiting oxygen index (LOI) and the additive content in the formulation. In the case of the intumescent coating, several parameters including total heat release (THR) measured by the Calorimeter cCone in the horizontal position, and mass loss rate, measured in the vertical position using a mass Loss Calorimeter were optimized. A small-scale test to measure the Critical heat Flux at Extinction (CFE) was also used to measure flame propagation. In addition, machine-based image segmentation was applied to assess the degradation front. This study demonstrated the relevance of OB in materials science
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Supporta, Giulio Fulvio. "Experimental study of jet fire impingment in pipelines". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.

Cerca il testo completo
Abstract (sommario):
The continuous growth of the global industrial sector has led to an increasing need for the transportation of oil, gas and chemicals through pipelines. The need for compactness of the pipelines along the corridors involves a relatively short distance between one pipe and another, thus leading to a certain degree of risk associated with their potential interaction. Furthermore, as the transported fluids may be flammable, any accidental release due to cracking or leakage in one of the pipelines could lead to an accidental scenario with severe consequences for the population, structures and the environment. A hypothetical accident in one of these pipes can lead to the occurrence of a domino effect, leading to an escalation of effects involving the other pipes. In the case of jet fires, the thermal action produced may lead to a certain risk of ignition of the released material, thus causing a progressive increase in the severity of the consequences. With the development of a jet fire, the high thermal flow that reaches an adjacent pipeline can damage the secondary target by widening the scale of the accident, especially if there is flame impingement. In order to study the thermal evolution of jet fires and quantify the thermal response of a target object placed perpendicular to the flame, a laboratory equipment has been used to obtain data on propane jet fires affecting a pipe containing a gaseous or liquid fluid. In this experimental configuration, pressure and temperature measurements for various propane release rates were performed with the appropriate instrumentation in order to calculate the absorbed heat and convective heat exchange coefficient of the target tube. In order to prevent the occurrence of these accidental fire scenarios, and in particular jet fire, a special type of passive fire protection, such as intumescent coatings, capable of forming an insulating layer when stressed by an external heat source, was also examined.
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Demidova-Buizinienė, Irina. "Statybinių medžiagų atsparumo ugniai padidinimo galimybių tyrimas". Master's thesis, Lithuanian Academic Libraries Network (LABT), 2009. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2009~D_20090703_115951-79680.

Testo completo
Abstract (sommario):
Baigiamajame magistro darbe nagrinėjamas priešgaisrinės išsipučiančios dangos porėto ir nedegių liekanų termiškai stabilaus sluoksnio sudarymo principai. Aprašomi užpildai bei kiti komponentai gerinantys dangos termoizoliacines savybes. Taip pat pateikta įvairių užpildų įtaką sudarant apsauginį dažų sluoksnį. Be to, darbe yra aprašyti minimalaus priešgaisrinės dangos sluoksnio, reikalingo plieno konstrukcijoms gaisro metu apsaugoti, skaičiavimai. Metodinėje-tiriamojoje darbo dalyje pateikta priešgaisrinės dangos bandymo atlikimo tvarka ir įranga, šilumos laidumo skaičiavimo metodika. Išnagrinėta koreliacinės-regresinės analizės vertinimo metodika. Praktinėje darbo dalyje analizuojamos priešgaisrinės dangos šilumos laidumo ir dangos termoizoliacinio sluoksnio padidėjimo priklausomybė nuo skirtingai didėjančių gaisro temperatūrų. Taip pat gautiems šilumos laidumo rezultatams atliekama koreliacinė-regresinė analizė. Darbą sudaro 5 dalys: įvadas, analitinė dalis, metodinė-tiriamoji dalis, išvados, literatūros sąrašas.
In the analytical part of this Thesis, the principals of fire resistance intumescent coatings foam and thermally stable char layer forming is presented. The fillers and other components for improving surface thermal properties are discussed. As well as a variety of fillers influence the protective coating analyses. In addition, the work is described the minimum fire protection coating layer of steel structures required for fire protection calculations. In the project part of this Thesis, the procedures and equipment, the heat conduction calculation is given. Moreover, the Thesis fire surface thermal conductivity and thermal insulation coating layer increases dependence on the different ways of rising temperatures in the fire analyses. It is also obtained the result of heat conduction by correlation-regression analysis. Structure: introduction, analytical part, the research part, conclusions and references.
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Deogon, Malkit Singh. "A study of intumescent coatings". Thesis, Brunel University, 1989. http://bura.brunel.ac.uk/handle/2438/6297.

Testo completo
Abstract (sommario):
Intumescent coatings are used in the field of fire protection to prevent certain construction elements reaching the critical temperatures at which excessive damage would. occur, thus avoiding premature structural collapse. The studies presented in this thesis have been directed towards an understanding of intumeseent coatings and the process of intumescence. The kinetics and mechanism of intumeseence are discussed. The behaviour of the raw materials used in the preparation of intumeseent coatings, was studied at elevated temperatures using thermal analytical techniques, and new formulations were developed. These formulations were examined In the laboratory using various screening tests and were also subjected to a large scale hydrocarbon fire test alongside other commercially-avallable coatings. A simplified coating formulation with the minimum of ingredients required to produce good intumescent properties was developed. This formulation was subjected to various heat-radiation intensities using an ISO ignitablilty apparatus. The behaviour of the intumescence, process observed was explained by a simple theoretical model. The model of Buckmasterv Anderson and Nachman was used and several new results were derived. In particular a relationship was derived giving the time taken for the temperature at the inner surface of the coating to reach a given value. The durability of the newly-developed intumescent coatings, and methods of improving it, were also investigated.
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Triantafyllidis, Zafeirios. "Structural enhancements with fibre-reinforced epoxy intumescent coatings". Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/29514.

Testo completo
Abstract (sommario):
Epoxy intumescent coatings are fire protection systems for steel structural elements that are widely used in applications that protection from severe hydrocarbon fires is required, such as oil and gas facilities. These polymer coatings react upon heating and expand into a thick porous char layer that insulates the protected steel element. In the typical fire scenarios for these applications, the intumescent coatings must resist very high heat fluxes and highly erosive forces from ignited pressurised gases. Hence, continuous fibre reinforcement is embedded in the thick epoxy coating during installation, so as to ensure the integrity of the weak intumesced char during fire exposure. This reinforcement is typically in the form of a bidirectional carbon and/or glass fibre mesh, thus under normal service conditions a fibre-reinforced intumescent coating (FRIC) is essentially a lightly fibre-reinforced polymer (FRP) composite material. This thesis examines the impacts of embedded high strength fibres on the tensile behaviour of epoxy intumescent materials in their unreacted state prior to fire exposure, and the potential enhancements that arise in the structural performance of elements protected with FRICs. An experimental programme is presented comprising tensile coupon tests of unreacted intumescent epoxies, reinforced with different fibre meshes at various fibre volume fractions. It is demonstrated that the tensile properties of FRICs can be enhanced considerably by including increasing amounts of carbon fibre reinforcement aligned in the principal loading direction, which can be tailored in the desired orientation on the coated structural members to enhance their load carrying capacity and/or deformability. An experimental study is presented on coated intact and artificially damaged I-beams (simulating steel losses from corrosion) tested in bending, demonstrating that FRICs can enhance the flexural response of the beams after yielding of steel, until the tensile rupture of the coatings. An analytical procedure for predicting the flexural behaviour of the coated beams is discussed and validated against the obtained test results, whereas a parametric analysis is performed based on this analytical model to assess the effect of various parameters on the strengthening efficiency of FRICs. The results of this analysis demonstrate that it is feasible to increase the flexural load capacity of thin sections considerably utilising the flexural strength gains from FRICs. Finally, a novel application is proposed in this thesis for FRICs as a potential system for structural strengthening or retrofitting reinforced concrete and concrete-encased steel columns by lateral confinement. An experimental study is presented on the axial compressive behaviour of short, plain concrete and concrete-encased structural steel columns that are wrapped in the hoop direction with FRICs. The results clearly show that epoxy intumescent coatings reinforced with a carbon fibre mesh of suitable weight can provide lateral confinement to the concrete core resisting its lateral dilation, thus resulting in considerable enhancements of the axial strength and deformability of concrete. The observed strengthening performance of the composite protective coatings is found to be at least as good as that of FRP wraps consisting of the same fibre reinforcement mesh and a conventional, non-intumescent epoxy resin. The predictive ability of existing design-oriented FRP confinement models is compared against the experimental results, and is found to be reasonably precise in predicting the peak strength of the tested columns, hence existing models appear to be suitable for design and analysis of column strengthening schemes with the proposed novel FRIC system. The research presented herein shows clearly that FRICs have a strong potential as alternative systems for consideration in the field of structural strengthening and rehabilitation, since they can provide substantial enhancements in the load carrying capacity for both applications considered. At the same time FRICs can thermally protect the underlying structural elements in the event of a fire, by intumescing and charring, thus potentially eliminating the need for additional passive fire protection that is common with conventional fire-rated FRP wrapping systems. Although this thesis provides a proof-of-concept for use of the proposed novel FRICs as structural strengthening materials, considerable additional research is particularly required to study their fire protection performance when applied to concrete substrates, to make use of the proposed hybrid functionality with confidence.
Gli stili APA, Harvard, Vancouver, ISO e altri
Più fonti

Libri sul tema "Intumescent coating"

1

Deogon, Malkit Singh. A study of intumescent coatings. Uxbridge: Brunel University, 1989.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Zybina, Olga, e Marina Gravit. Intumescent Coatings for Fire Protection of Building Structures and Materials. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59422-0.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Zhang, Chao. Reliability of Steel Columns Protected by Intumescent Coatings Subjected to Natural Fires. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46379-6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

National Institute of Standards and Technology (U.S.), a cura di. Evaluation of intumescent body panel coatings in simulated post-accident vehicle fires. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1998.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

National Institute of Standards and Technology (U.S.), a cura di. Evaluation of intumescent body panel coatings in simulated post-accident vehicle fires. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1998.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Wang, Ling-Ling, Jun-Wei Ge, Guo-Qiang Li e Qing Xu. Intumescent Coating and Fire Protection of Steel Structures. Taylor & Francis Group, 2023.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Wang, Ling-Ling, Jun-Wei Ge, Guo-Qiang Li e Qing Xu. Intumescent Coating and Fire Protection of Steel Structures. Taylor & Francis Group, 2023.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Wang, Ling-Ling, Jun-Wei Ge, Guo-Qiang Li e Qing Xu. Intumescent Coating and Fire Protection of Steel Structures. Taylor & Francis Group, 2023.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Intumescent Coating and Fire Protection of Steel Structures. CRC Press LLC, 2023.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Zybina, Olga, e Marina Gravit. Intumescent Coatings for Fire Protection of Building Structures and Materials. Springer International Publishing AG, 2020.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Più fonti

Capitoli di libri sul tema "Intumescent coating"

1

Li, Guo-Qiang, Ling-Ling Wang, Qing Xu e Jun-Wei Ge. "Introduction to intumescent coatings". In Intumescent Coating and Fire Protection of Steel Structures, 1–28. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003287919-1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Li, Guo-Qiang, Ling-Ling Wang, Qing Xu e Jun-Wei Ge. "Determining the thermal resistance of intumescent coatings". In Intumescent Coating and Fire Protection of Steel Structures, 29–47. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003287919-2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Li, Guo-Qiang, Ling-Ling Wang, Qing Xu e Jun-Wei Ge. "Behaviour of intumescent coatings under large space fires". In Intumescent Coating and Fire Protection of Steel Structures, 49–67. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003287919-3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Li, Guo-Qiang, Ling-Ling Wang, Qing Xu e Jun-Wei Ge. "Behaviour of intumescent coatings exposed to localized fires". In Intumescent Coating and Fire Protection of Steel Structures, 69–90. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003287919-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Li, Guo-Qiang, Ling-Ling Wang, Qing Xu e Jun-Wei Ge. "Hydrothermal ageing effects on the insulative properties of intumescent coatings". In Intumescent Coating and Fire Protection of Steel Structures, 91–108. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003287919-5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Li, Guo-Qiang, Ling-Ling Wang, Qing Xu e Jun-Wei Ge. "Predicting the temperatures of steel substrates with intumescent coatings under non-uniform fire heating conditions". In Intumescent Coating and Fire Protection of Steel Structures, 133–44. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003287919-7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Li, Guo-Qiang, Ling-Ling Wang, Qing Xu e Jun-Wei Ge. "Influence of topcoats on insulation and the anti-ageing performance of intumescent coatings". In Intumescent Coating and Fire Protection of Steel Structures, 109–31. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003287919-6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Aziz, Hammad, Faiz Ahmad e M. Zia-ul-Mustafa. "Nano Filler Reinforced Intumescent Fire Retardant Coating for Protection of Structural Steel". In InCIEC 2014, 831–44. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-287-290-6_72.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Beh, Jing Han, Ming Chian Yew, Lip Huat Saw e Ming Kun Yew. "Fire-Resistant Properties of Green Intumescent Coating Incorporated with BioAsh for Steel Protection". In Lecture Notes in Mechanical Engineering, 257–64. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3641-7_30.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Gooch, Jan W. "Intumescent Coatings". In Encyclopedic Dictionary of Polymers, 395. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_6433.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Atti di convegni sul tema "Intumescent coating"

1

Wang, Peng. "Experimental Study on Boron Nitride Intumescent Fire Retardant Coating". In 3rd Annual International Conference on Advanced Material Engineering (AME 2017). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/ame-17.2017.40.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Mesquita, L. M. R., P. A. G. Piloto e M. A. P. Vaz. "Temperature evaluation in steel fire protected elements with intumescent coating". In SAFE 2007. Southampton, UK: WIT Press, 2007. http://dx.doi.org/10.2495/safe070231.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Khayambashi, Mahsa, Fatemeh Mohammadi e Mahdi Akbarshahi. "Fire-resistant HDPE fuel system through intumescent coating with sufficient adhesion". In PROCEEDINGS OF THE 38TH INTERNATIONAL CONFERENCE OF THE POLYMER PROCESSING SOCIETY (PPS-38). AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0205132.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Pötzsch, Sina, Sebastian Timme, Christian Sklorz, Danilo Skoczowsky, Frank Otremba e Simone Krüger. "Fire Protection Systems for Tanks Made of GFRP". In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-70381.

Testo completo
Abstract (sommario):
The application of lightweight materials for tanks for transportation appears promising. Besides saving weight and therefore transportation costs, new complex geometries that depart from common cylindrical shapes of steel tanks can be manufactured. For transportation of dangerous goods, fire and explosion safety must be maintained to prevent accidents with serious consequences. In this work the fire behavior of lightweight tanks made from glass fiber reinforced plastics (GFRP) with complex geometries is investigated. Pretests on intermediate scale GFRP plates are conducted to identify suitable fire protection systems and surface treatments for composite tanks. The fire resistance is shown to be improved by addition of fire protective coatings and integrated layers. Finally, a complex rectangular GFRP tank with a holding capacity of 1100 liters is fire protected with an intumescent fire coating. The tank is filled up to 80 % with water and burned under an engulfing fully developed fire. It was shown that the intumescent layer could expand before the decomposition of the resin occurred. Furthermore, the adhesion between tank surface and coating was maintained. The structure could withstand a fire for more than 20 min.
Gli stili APA, Harvard, Vancouver, ISO e altri
5

J., Zhang, Delichatsios M.A., McKee M. e Ukleja S. "Numerical Study of Burning Behaviours of Flaxboard with Intumescent Coating and Nanoparticles". In Sixth International Seminar on Fire and Explosion Hazards. Singapore: Research Publishing Services, 2011. http://dx.doi.org/10.3850/978-981-08-7724-8_15-07.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Ahmad, Faiz, Sami Ullah, Hammad Aziz e Nor Sharifah Omar. "Thermal performance of glass fiber reinforced intumescent fire retardant coating for structural applications". In PROCEEDINGS OF THE 23RD SCIENTIFIC CONFERENCE OF MICROSCOPY SOCIETY MALAYSIA (SCMSM 2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4919146.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Ullah, Sami, Faiz Ahmad, A. M. Shariff e M. A. Bustam. "The effect of 150μm expandable graphite on char expansion of intumescent fire retardant coating". In 3RD INTERNATIONAL CONFERENCE ON FUNDAMENTAL AND APPLIED SCIENCES (ICFAS 2014): Innovative Research in Applied Sciences for a Sustainable Future. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4898492.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Yasir, Muhammad, Norlaili Binti Amir, Faiz Ahmad, Afif Afiq e Zeeshan Baig. "Effect of dispersing agent on the thermal properties of basalt fibre reinforced intumescent coating". In 6TH INTERNATIONAL CONFERENCE ON PRODUCTION, ENERGY AND RELIABILITY 2018: World Engineering Science & Technology Congress (ESTCON). Author(s), 2018. http://dx.doi.org/10.1063/1.5075608.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Birtane, Hatice. "The production of flame retardant paper with DOPO". In 10th International Symposium on Graphic Engineering and Design. University of Novi Sad, Faculty of technical sciences, Department of graphic engineering and design,, 2020. http://dx.doi.org/10.24867/grid-2020-p16.

Testo completo
Abstract (sommario):
Flame retardant property to paper increases the use of paper and the value of paper products. The flame retardant property was achieved by the addition of an organophosphorus agent to the paper. A great deal of research has been done on 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) derivatives as flame retardants. To apply the flame retardant property in condensed phase, DOPO derivative materials are generally used as an acid source for intumescent flame retardants to promote dehydration and carbonization of the charring agent to form a continuous layer of carbon. In this study, In order to prepare a flame retardant paper coating, DOPO derivative was synthesized with 3-aminophenyl sulfone, and benzaldehyde reaction and the chemical structure of DOPO is illuminated by ATR-FTIR then paper was coating with a flame retardant coating formulation ingredient with DOPO. The paper’s properties were investigated. Surface energy of coated papers and contact angles were determined with goniometer. Printability parameters such as color, gloss, surface tension were examined. The results the study DOPO added paper coatings improve the paper flame retardancy.
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Zia-ul-Mustafa, M., Faiz Ahmad, Puteri S. M. Megat-Yusoff e Hammad Aziz. "Synergistic effects of mica and wollastonite fillers on thermal performance of intumescent fire retardant coating". In PROCEEDINGS OF THE 23RD SCIENTIFIC CONFERENCE OF MICROSCOPY SOCIETY MALAYSIA (SCMSM 2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4919184.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Rapporti di organizzazioni sul tema "Intumescent coating"

1

Song, Qian-Yi, Lin-Hai Han, Kan Zhou e Yuan Feng. TEMPERATURE DISTRIBUTION OF CFST COLUMNS PROTECTED BY INTUMESCENT FIRE COATING. The Hong Kong Institute of Steel Construction, dicembre 2018. http://dx.doi.org/10.18057/icass2018.p.164.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Hamins, Anthony. Evaluation of intumescent body panel coatings in simulated post-accident vehicle fires. Gaithersburg, MD: National Institute of Standards and Technology, 1998. http://dx.doi.org/10.6028/nist.ir.6157.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Nicholson, J. C. Evaluation of Environmental Conditions on the Curing Of Commercial Fixative and Intumescent Coatings. Office of Scientific and Technical Information (OSTI), settembre 2016. http://dx.doi.org/10.2172/1404905.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Nicholson, J. C. Evaluation of Environmental Conditions on the Curing Of Commercial Fixative and Intumescent Coatings. Office of Scientific and Technical Information (OSTI), gennaio 2017. http://dx.doi.org/10.2172/1404906.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia