Letteratura scientifica selezionata sul tema "Intracellular biomineralization"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Intracellular biomineralization".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Articoli di riviste sul tema "Intracellular biomineralization":

1

Lemloh, Marie Louise. "Biomineralization in Ciliates". Key Engineering Materials 672 (gennaio 2016): 40–46. http://dx.doi.org/10.4028/www.scientific.net/kem.672.40.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
From a biomineralization point of view, the protist world is far less investigated than its metazoan counterpart. However, eukaryotic single-celled organisms offer a very unique access to discover biomineralization mechanisms in vivo. With respect to intracellular mechanisms involved in ion enrichment, mineral transport or vesicle formation ciliates represent a good model system. One important group of protists, the ciliates, is very common and numerous studies have been performed on their ecology, cell biology, morphology or genetics. Ciliates are also known for their formation of diverse mineralized intracellular and extracellular structures. However, only limited numbers of detailed studies on the kind of minerals, their properties or their formation mechanisms have been reported so far. This article reviews older and more recent literature on biomineralization in ciliates.
2

Song, Zhiyong, Long Liu, Xiaoyu Wang, Yongqiang Deng, Qinggong Nian, Guangchuan Wang, Shunya Zhu et al. "Intracellular delivery of biomineralized monoclonal antibodies to combat viral infection". Chemical Communications 52, n. 9 (2016): 1879–82. http://dx.doi.org/10.1039/c5cc09252c.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Conventional therapeutic monoclonal antibodies (mAbs) are invalid for intracellular viruses but by using in situ biomineralization treatment, they can be successfully delivered into cells to inhibit intracellular viral replication.
3

Uebe, René, Birgit Voigt, Thomas Schweder, Dirk Albrecht, Emanuel Katzmann, Claus Lang, Lars Böttger, Berthold Matzanke e Dirk Schüler. "Deletion of a fur-Like Gene Affects Iron Homeostasis and Magnetosome Formation in Magnetospirillum gryphiswaldense". Journal of Bacteriology 192, n. 16 (18 giugno 2010): 4192–204. http://dx.doi.org/10.1128/jb.00319-10.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
ABSTRACT Magnetotactic bacteria synthesize specific organelles, the magnetosomes, which are membrane-enveloped crystals of the magnetic mineral magnetite (Fe3O4). The biomineralization of magnetite involves the uptake and intracellular accumulation of large amounts of iron. However, it is not clear how iron uptake and biomineralization are regulated and balanced with the biochemical iron requirement and intracellular homeostasis. In this study, we identified and analyzed a homologue of the ferric uptake regulator Fur in Magnetospirillum gryphiswaldense, which was able to complement a fur mutant of Escherichia coli. A fur deletion mutant of M. gryphiswaldense biomineralized fewer and slightly smaller magnetite crystals than did the wild type. Although the total cellular iron accumulation of the mutant was decreased due to reduced magnetite biomineralization, it exhibited an increased level of free intracellular iron, which was bound mostly to a ferritin-like metabolite that was found significantly increased in Mössbauer spectra of the mutant. Compared to that of the wild type, growth of the fur mutant was impaired in the presence of paraquat and under aerobic conditions. Using a Fur titration assay and proteomic analysis, we identified constituents of the Fur regulon. Whereas the expression of most known magnetosome genes was unaffected in the fur mutant, we identified 14 proteins whose expression was altered between the mutant and the wild type, including five proteins whose genes constitute putative iron uptake systems. Our data demonstrate that Fur is a regulator involved in global iron homeostasis, which also affects magnetite biomineralization, probably by balancing the competing demands for biochemical iron supply and magnetite biomineralization.
4

Sun, Bin, Junbing Jiang, Jiali Tao e Zuozhen Han. "Biomineralization of Carbonates Induced by Mucilaginibacter gossypii HFF1: Significant Role of Biochemical Parameters". Minerals 12, n. 5 (12 maggio 2022): 614. http://dx.doi.org/10.3390/min12050614.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Although the precipitation of carbonate minerals induced by various bacteria is widely studied, the changes in the biochemical parameters, and their significant role in the biomineralization processes, still need further exploration. In this study, Mucilaginibacter gossypii HFF1 was isolated, identified, and used to induce carbonate minerals at various Mg/Ca ratios. The biochemical parameters were determined in order to explore the biomineralization mechanisms, including cell concentration, pH, ammonia, carbonic anhydrase activity, and alkaline phosphatase activity. The characteristics of extracellular minerals and intracellular inclusions were both analyzed. In addition, the amino acid composition of the extracellular polymeric substance was also tested. Results show that the biochemical parameters provide an alkaline environment for precipitation, due to the combined effect of ammonia, carbonic anhydrase, and alkaline phosphatase. Biotic minerals are characterized by preferred orientation, specific shape, and better crystalline and better thermal stability, indicating their biogenesis. Most of the amino acids in the extracellular polymeric substance are negatived charged, and facilitate the binding of magnesium and calcium ions. The particles with weak crystalline structure in the EPS prove that it acts as a nucleation site. Intracellular analyses prove the presence of the intracellular amorphous inclusions. Our results suggest that the changes in the biochemical parameters caused by bacteria are beneficial to biomineralization, and play a necessary role in its process. This offers new insight into understanding the biomineralization mechanism of the bacteria HFF1.
5

Benzerara, K., F. Skouri-Panet, J. Li, C. Ferard, M. Gugger, T. Laurent, E. Couradeau et al. "Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria". Proceedings of the National Academy of Sciences 111, n. 30 (9 luglio 2014): 10933–38. http://dx.doi.org/10.1073/pnas.1403510111.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Li, Jinhua, Isabel Margaret Oliver, Nithavong Cam, Thomas Boudier, Marine Blondeau, Eric Leroy, Julie Cosmidis et al. "Biomineralization Patterns of Intracellular Carbonatogenesis in Cyanobacteria: Molecular Hypotheses". Minerals 6, n. 1 (3 febbraio 2016): 10. http://dx.doi.org/10.3390/min6010010.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Xie, Beibei, Huichao Zhao, Yuan-Fu Ding, Ziyi Wang, Yan Wang, Cheng Gao e Ruibing Wang. "Drug-free tumor therapy via spermine-responsive intracellular biomineralization". Journal of Controlled Release 357 (maggio 2023): 572–79. http://dx.doi.org/10.1016/j.jconrel.2023.04.018.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Martignier, Agathe, Montserrat Filella, Kilian Pollok, Michael Melkonian, Michael Bensimon, François Barja, Falko Langenhorst, Jean-Michel Jaquet e Daniel Ariztegui. "Marine and freshwater micropearls: biomineralization producing strontium-rich amorphous calcium carbonate inclusions is widespread in the genus <i>Tetraselmis</i> (Chlorophyta)". Biogeosciences 15, n. 21 (7 novembre 2018): 6591–605. http://dx.doi.org/10.5194/bg-15-6591-2018.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Abstract. Unicellular algae play important roles in the biogeochemical cycles of numerous elements, particularly through the biomineralization capacity of certain species (e.g., coccolithophores greatly contributing to the “organic carbon pump” of the oceans), and unidentified actors of these cycles are still being discovered. This is the case of the unicellular alga Tetraselmis cordiformis (Chlorophyta) that was recently discovered to form intracellular mineral inclusions, called micropearls, which had been previously overlooked. These intracellular inclusions of hydrated amorphous calcium carbonates (ACCs) were first described in Lake Geneva (Switzerland) and are the result of a novel biomineralization process. The genus Tetraselmis includes more than 30 species that have been widely studied since the description of the type species in 1878. The present study shows that many other Tetraselmis species share this biomineralization capacity: 10 species out of the 12 tested contained micropearls, including T. chui, T. convolutae, T. levis, T. subcordiformis, T. suecica and T. tetrathele. Our results indicate that micropearls are not randomly distributed inside the Tetraselmis cells but are located preferentially under the plasma membrane and seem to form a definite pattern, which differs among species. In Tetraselmis cells, the biomineralization process seems to systematically start with a rod-shaped nucleus and results in an enrichment of the micropearls in Sr over Ca (the Sr∕Ca ratio is more than 200 times higher in the micropearls than in the surrounding water or growth medium). This concentrating capacity varies among species and may be of interest for possible bioremediation techniques regarding radioactive 90Sr water pollution. The Tetraselmis species forming micropearls live in various habitats, indicating that this novel biomineralization process takes place in different environments (marine, brackish and freshwater) and is therefore a widespread phenomenon.
9

Martignier, A., M. Pacton, M. Filella, J. M. Jaquet, F. Barja, K. Pollok, F. Langenhorst et al. "Intracellular amorphous carbonates uncover a new biomineralization process in eukaryotes". Geobiology 15, n. 2 (30 settembre 2016): 240–53. http://dx.doi.org/10.1111/gbi.12213.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Han, Zuozhen, Xiao Gao, Hui Zhao, Maurice Tucker, Yanhong Zhao, Zhenpeng Bi, Juntong Pan, Guangzhen Wu e Huaxiao Yan. "Extracellular and Intracellular Biomineralization Induced by Bacillus licheniformis DB1-9 at Different Mg/Ca Molar Ratios". Minerals 8, n. 12 (11 dicembre 2018): 585. http://dx.doi.org/10.3390/min8120585.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Biomineralization has become a research hotspot and attracted widespread attention in the field of carbonate sedimentology. In this study, precipitation of carbonate minerals was induced by Bacillus licheniformis DB1-9 bacteria, (identity confirmed with its phylogenetic tree), to further explore the biomineralization mechanisms. During experiments, lasting up to 24 days with varying Mg/Ca molar ratios and regular monitoring of conditions, ammonia and carbonic anhydrase are released by the bacteria, resulting in a pH increase. Carbonic anhydrase could have promoted carbon dioxide hydration to produce bicarbonate and carbonate ions, and so promoted supersaturation to facilitate the precipitation of carbonate minerals. These include rhombohedral, dumbbell-shaped, and elongated calcite crystals; aragonite appears in the form of mineral aggregates. In addition, spheroidal and fusiform minerals are precipitated. FTIR results show there are organic functional groups, such as C–O–C and C=O, as well as the characteristic peaks of calcite and aragonite; these indicate that there is a close relationship between the bacteria and the minerals. Ultrathin slices of the bacteria analyzed by HRTEM, SAED, EDS, and STEM show that precipitate within the extracellular polymeric substances (EPS) has a poor crystal structure, and intracellular granular areas have no crystal structure. Fluorescence intensity and STEM results show that calcium ions can be transported from the outside to the inside of the cells. This study provides further insights to our understanding of biomineralization mechanisms induced by microorganisms.

Tesi sul tema "Intracellular biomineralization":

1

Park, Yeseul. "Metal sulfide biomineralization by magnetotactic bacteria". Electronic Thesis or Diss., Aix-Marseille, 2022. http://www.theses.fr/2022AIXM0262.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
La biominéralisation de sulfures métalliques est observée tant dans des cultures microbiennes que dans la nature. Cependant, seulement quelques cas ont été définis comme étant des processus biologiquement contrôlés comme cela est le cas pour la greigite produite par les bactéries magnétotactiques. Pendant ma thèse, j'ai découvert un nouveau type de biominéralisation intracellulaire de sulfure métallique en étudiant l'impact du cuivre sur la biominéralisation de la greigite par la bactérie Desulfamplus magnetovallimortis BW-1.Le biominéral que j'ai identifié a une structure et une organisation cristalline originales. Les particules sont de morphologie sphérique ou ellipsoïdale et composées de sous-grains de 1 à 2 nm de sulfure de cuivre hexagonal qui reste dans un état métastable. Les particules sont situées dans le périplasme, et sont entourées d'une substance organique. Sur la base de ces observations, j'ai conclu que le biominéral est produit et conservé grâce à un contrôle biologique. En conséquence, j'ai mené des études de protéomique pour trouver des protéines associées au processus qui ont mis à jour deux protéines périplasmiques, une protéine résistante aux métaux lourds et une protéase de type DegP, qui fonctionnent probablement ensemble pour réagir au stress causé par le cuivre.Une telle biominéralisation intracellulaire est spécifique à BW-1et n'est initiée que par les ions cuivre, mais pas par d'autres ions métalliques comme le nickel, le zinc ou le cobalt. Mes recherches de doctorat révèlent donc des caractéristiques inconnues de la biominéralisation des sulfures métalliques, en particulier au sein des bactéries magnétotactiques
Biomineralization of metal sulfides has been broadly observed in microbial cultures and in nature. However, only a few cases have been reported as biologically-controlled processes, such as greigite produced by magnetotactic bacteria. I discovered a new type of intracellular metal sulfide biomineralization, while studying the impact of copper on greigite biomineralization by the magnetotactic bacterium Desulfamplus magnetovallimortis strain BW-1.The newly discovered metal sulfide biominerals are nanoscopic particles and have an interesting crystal structure and organization. These spherical or ellipsoidal particles are composed of 1-2 nm-sized sub-grains of hexagonal copper sulfide that remains in a metastable state. The particles are located in the periplasmic space, surrounded by an organic substance. Based on these observations, it was concluded that the biomineral produced and conserved is a result of biological control. Proteomics studies with cellular and particulate samples identified several proteins associated with the process. The initial result showed that two periplasmic proteins, a heavy metal resistant protein, and a DegP-like protease, are likely working together to react to the envelope stress caused by copper. Such intracellular biomineralization is organism-specific and only initiated by the increase of copper ions, but not by other metal ions like nickel, zinc, or cobalt. Overall, my work reveals unknown features of metal sulfide biomineralization, specifically within magnetotactic bacteria
2

Cam, Nithavong. "Biominéralisation intracellulaire par des cyanobactéries : du modèle aux cellules". Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066495/document.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Cette thèse vise à avancer dans la compréhension de la formation récemment découverte de carbonates amorphes intracellulaires par des cyanobactéries. Des synthèses abiotiques ont permis de produire des carbonates similaires aux inclusions intracellulaires en termes de morphologie, structure et composition chimique. Ceci a permis notamment de discuter les conditions chimiques présentes dans le milieu intracellulaire de ces bactéries, qui semblent incompatibles avec les connaissances actuelles de l’intérieur des cyanobactéries. Plusieurs souches de cyanobactéries formant ou non des carbonates intracellulaires ont été cultivées en laboratoire. Des études de chimie des solutions sur le milieu extracellulaire ont montré que la précipitation intracellulaire est un processus actif pour la cellule, c’est-à-dire nécessitant de l’énergie. De plus, les cyanobactéries formant des carbonates de calcium intracellulaires imposent de faibles concentrations en calcium dans leur milieu de vie. Le suivi de la formation de carbonates intracellulaires dans des milieux contrôlés a aussi permis de démontrer qu’une espèce formait spécifiquement des carbonates de baryum et de strontium grâce à une affinité pour le baryum supérieure à celle pour le strontium, elle-même supérieure à celle pour le calcium. Ceci ouvre des perspectives intéressantes pour la dépollution et questionne l’utilisation des rapports Sr/Ca comme proxy des paléo-environnements
In this thesis we study the recently discovered formation of intracellular amorphous carbonates by cyanobacteria. Abiotic syntheses produced carbonates with a morphology, structure and composition similar as intracellular inclusions. The intracellular chemical conditions in the cyanobacteria can be discussed; they seem inconsistent with our current knowledge about cyanobacteria. Several cyanobacterial strains, forming intracellular carbonates or not, were cultured in the laboratory. Analyses of the chemical composition of extracellular solutions showed that intracellular precipitation is an active process, i.e., it needs energy. Also, cyanobacteria forming intracellular calcium carbonates imposed low concentrations in calcium in their living environment. Monitoring the formation of intracellular carbonates in controlled environments also demonstrated that one species formed carbonates of barium and strontium owing to an affinity for barium higher than for strontium and higher for strontium than calcium. This feature opens interesting perspectives on bioremediation and questions the use of Sr/Ca ratios as a proxy for paleo-environments
3

Cam, Nithavong. "Biominéralisation intracellulaire par des cyanobactéries : du modèle aux cellules". Electronic Thesis or Diss., Paris 6, 2015. http://www.theses.fr/2015PA066495.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Cette thèse vise à avancer dans la compréhension de la formation récemment découverte de carbonates amorphes intracellulaires par des cyanobactéries. Des synthèses abiotiques ont permis de produire des carbonates similaires aux inclusions intracellulaires en termes de morphologie, structure et composition chimique. Ceci a permis notamment de discuter les conditions chimiques présentes dans le milieu intracellulaire de ces bactéries, qui semblent incompatibles avec les connaissances actuelles de l’intérieur des cyanobactéries. Plusieurs souches de cyanobactéries formant ou non des carbonates intracellulaires ont été cultivées en laboratoire. Des études de chimie des solutions sur le milieu extracellulaire ont montré que la précipitation intracellulaire est un processus actif pour la cellule, c’est-à-dire nécessitant de l’énergie. De plus, les cyanobactéries formant des carbonates de calcium intracellulaires imposent de faibles concentrations en calcium dans leur milieu de vie. Le suivi de la formation de carbonates intracellulaires dans des milieux contrôlés a aussi permis de démontrer qu’une espèce formait spécifiquement des carbonates de baryum et de strontium grâce à une affinité pour le baryum supérieure à celle pour le strontium, elle-même supérieure à celle pour le calcium. Ceci ouvre des perspectives intéressantes pour la dépollution et questionne l’utilisation des rapports Sr/Ca comme proxy des paléo-environnements
In this thesis we study the recently discovered formation of intracellular amorphous carbonates by cyanobacteria. Abiotic syntheses produced carbonates with a morphology, structure and composition similar as intracellular inclusions. The intracellular chemical conditions in the cyanobacteria can be discussed; they seem inconsistent with our current knowledge about cyanobacteria. Several cyanobacterial strains, forming intracellular carbonates or not, were cultured in the laboratory. Analyses of the chemical composition of extracellular solutions showed that intracellular precipitation is an active process, i.e., it needs energy. Also, cyanobacteria forming intracellular calcium carbonates imposed low concentrations in calcium in their living environment. Monitoring the formation of intracellular carbonates in controlled environments also demonstrated that one species formed carbonates of barium and strontium owing to an affinity for barium higher than for strontium and higher for strontium than calcium. This feature opens interesting perspectives on bioremediation and questions the use of Sr/Ca ratios as a proxy for paleo-environments
4

De, Wever Alexis. "Étude de la biominéralisation de carbonates intracellulaires et de silicates de magnésium hydratés dans des environnements lacustres alcalins". Electronic Thesis or Diss., Sorbonne université, 2019. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2019SORUS480.pdf.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Les stromatolites sont des roches organo-sédimentaires laminées composées de carbonates de Ca et/ou Mg mais également de silicates de Mg dans certains cas. Les processus impliqués dans leur formation restent encore mal compris. L’objectif central de cette thèse est de mieux comprendre les processus géochimiques et géomicrobiologiques permettant de favoriser ou au contraire de défavoriser la formation des carbonates et silicates de magnésium dans les environnements lacustres alcalins mexicains. Deux axes principaux ont été développés. Le premier axe s’est focalisé sur les analyses de souches formant des carbonates de calcium amorphes (ACC) intracellulaire (ACC+) ou non. Une grande diversité de souches de cyanobactéries a été analysée pour leur capacité à incorporer le Ca. De plus, l’impact des alcalino-terreux sur la croissance de certaines de ces souches a été déterminé. A partir de cette étude, nous avons mis en évidence que les souches de cyanobactérie ACC+ incorporent plus de Ca que les autres et qu’elles le stockent principalement dans les inclusions d’ACC et dans les polyphosphates (polyP). De plus, nous avons déterminé que les souches ACC+ ont relativement plus besoin de Ca pour leur croissance et certaines d’entre elles sont capables de substituer le Ca par du Sr et Ba. Nous proposons que les inclusions d’ACC 1) peuvent servir de ballasts, 2) peuvent tamponner le pH intracellulaire et équilibrer la formation d'hydroxyde par conversion de HCO3 en CO2 lors de la fixation du carbone et 3) alternativement, ils peuvent servir de forme de stockage de carbone inorganique disponible pour les cellules sur des périodes limitées en C. De plus, les polyP pourraient être impliqués dans le stockage de Ca. Plus largement, les cyanobactéries ACC+ pourraient favoriser la dissolution de carbonate de Ca et par extension celle des stromatolites. Le second axe s’est intéressé à l’étude de la formation de silicates de magnésium dans les sédiments et mésocosmes analogues de 3 lacs alcalins mexicains mais également par des expériences de biominéralisation. Les analyses minéralogiques et chimiques des silicates de magnésium ont été couplées aux caractérisations géochimiques des solutions. L’étude des sédiments a montré la formation de deux smectites, l’une pauvre et l’autre riche en Al et également de smectite ferrugineuse ou sans forte teneur en Fe. Plusieurs interprétations ont été proposées quant à leur formation : 1) la dissolution conjointe d’hydromagnésite et des frustules de silice biogénique, 2) elle est héritée de la colonne d’eau, 3) est liée à l’altération des feldspaths dans les sédiments et 4) à la biominéralisation dans la colonne d’eau. Il a également été montré qu’une souche de cyanobactéries est capable d’induire la précipitation de silicates de magnésium en milieu non tamponné. Dans les mésocosme des lacs alcalins, la formation de silicate de Mg serait directement liée à la composition minéralogique des microbialites, et possiblement des diatomées permettant l’apport de Si dans la solution et localement dans le biofilm, et est biologiquement influencée par les EPS des communautés microbiennes
Stromatolites are laminated organo-sedimentary rocks composed of Ca and/or Mg carbonates but also Mg-silicates in some cases. The processes involved in their formation are still poorly understood. The main goal of this thesis was to better understand the geochemical and geomicrobiological processes that favor the formation or dissolution of carbonates and Mg-silicates in Mexican alkaline lacustrine environments. Two main axes have been developed. The first axis focused on the study of 52 cyanobacterial strains, some forming ACC intracellular, others not forming ACC. The strains were analyzed for their ability to incorporate Ca. The impact of alkaline earth elements on the growth of some of the strains was determined. In this study we have shown that ACC+ cyanobacterial strains incorporate more Ca than others and they store this Ca strongly in ACC and in polyP. In addition, we determined that ACC+ strains need more Ca for their growth and some of them are capable to substitute Ca by Sr and Ba for this purpose. We propose that ACC inclusions 1) can serve as ballasts, 2) can buffer intracellular pH and balance the formation of HCO3 conversion hydroxide to CO2 during carbon fixation and 3) available inorganic carbon storage for carbon dioxide. In addition, polyP could be involved in Ca storage. More broadly, ACC+ cyanobacteria have contributed to the dissolution of calcium carbonate and by extension stromatolites. The second axis focused on the study of Mg-silicate formation in sediments and mesocosms of 3 Mexican alkaline lakes but also in laboratory experiments. Mineralogical and chemical analyzes of magnesium silicates have been coupled with geochemical characterization of the solutions. The study of sediments showed the formation of an Al-low and an Al-rich stevensite-like phase and of ferrous or non-ferrous saponite-like. Several interpretations have been proposed regarding their formation: 1) dissolution of hydromagnesite and biogenic silica frustules, 2) it is inherited from the water column, 3) it is related to the alteration of feldspaths within sediments and 4) biomineralization in the water column. It has also been shown that a cyanobacterial strain was able to induce precipitation of magnesium silicates in an unbuffered medium. Mg-silicate formation in mesocosms from alkaline lakes is thought to be directly related to the mineralogical composition of microbialites, and possibly diatoms that allow Si to be introduced into the solution and locally into the biofilm and is biologically influenced by microbial community EPS

Libri sul tema "Intracellular biomineralization":

1

Pan, Yongxin, Damien Faivre, Karim Benzerara e Wei Lin, a cura di. Intracellular biomineralization in bacteria. Frontiers SA Media, 2014. http://dx.doi.org/10.3389/978-2-88919-272-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Capitoli di libri sul tema "Intracellular biomineralization":

1

Jroundi, Fadwa, Mohamed L. Merroun, Francisca Martínez-Ruiz e María Teresa González-Muñoz. "Intracellular and Extracellular Bacterial Biomineralization". In Microbiology Monographs, 41–61. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-80807-5_2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Watabe, Norimitsu, e Roni J. Kingsley. "Extra-, Inter-, and Intracellular Mineralization in Invertebrates and Algae". In Origin, Evolution, and Modern Aspects of Biomineralization in Plants and Animals, 209–23. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4757-6114-6_15.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Tester, Chantel C., e Derk Joester. "Precipitation in Liposomes as a Model for Intracellular Biomineralization". In Research Methods in Biomineralization Science, 257–76. Elsevier, 2013. http://dx.doi.org/10.1016/b978-0-12-416617-2.00012-6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Lowenstam, Heinz A., e Stephen Weiner. "Some Nonskeletal Functions in Biomineralization". In On Biomineralization. Oxford University Press, 1989. http://dx.doi.org/10.1093/oso/9780195049770.003.0012.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
The functions of mineralized hard parts are often self-evident. In many of the tables throughout the book we note the assigned or very often assumed functions of many different mineralized bodies. Often, however, assumed functions do not stand up to closer examination. A good example is the study of the cells of the hepatopancreas of gastropods (Howard et al. 1981). These glands have numerous cells containing intracellular mineralized granules. It was generally assumed that they all functioned as transient storage sites for calcium ions, until it was found that a subpopulation forms granules of a different type, which are used for heavy metal detoxification. Granules can be used in other ways as well. Certain polychaete worms, for example, strengthen their muscles by packing them with granules (Gibbs and Bryan 1984). Spicules are also commonly formed by many organisms and their functions are often not understood. They tend to have elaborate morphologies and mineralogies that are species specific, implying that they do perform specialized functions. These are just a few of many examples in which the functions of mineralized bodies still need to be determined. In this chapter we describe four different cases in which the functions are fairly well established. They have been investigated in some detail and, thus, provide good guidelines as to the various approaches by which function can be investigated. Some gravity receptors have been closely examined with respect to neuroanatomy and function, but not with respect to the specific adaptations of structure and mineralogy of the ubiquitous “heavy bodies.” Studies of biologic magnetic field receptors, in contrast, have focused on the mineral, and virtually nothing is known about the neuroanatomy. The molecular structure of the iron storage molecule ferritin is known with a resolution of a few Angstroms. Ferritin provides us with a glimpse of the insights that can be gained into function from such detailed structural information. Finally, some studies on the control of proteins on ice crystal formation represent the first application of the powerful techniques of molecular biology to determining function in biomineralization. These are undoubtedly the forerunners of many function-oriented studies using molecular biological techniques.
5

Egwim, Evans C., Oluwafemi A. Oyewole e Japhet G. Yakubu. "Fungal Bioremediation of Pollutants". In Bioremediation for Environmental Pollutants, 181–237. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815123494123010009.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Advancement in industrialization and urbanization has caused an influx of contaminants into the environment polluting the soil, water, and air. These contaminants come in various forms and structures, including heavy metals, petroleum hydrocarbons, industrial dyes, pharmaceutically active compounds, pesticides, and many other toxic chemicals. The presence of these pollutants in the environment poses a serious threat to living things, including humans. Various conventional methods have been developed to tackle this menace, though effective, are however not safe for the ecosystem. Interestingly, bioremediation has offered a cheap, effective, and environmentally safe method for the removal of recalcitrant pollutants from the environment. White-rot fungi (WRF), belonging to the basidiomycetes, have shown class and proven to be an excellent tool in the bioremediation of the most difficult organic pollutants in the form of lignin. White-rot fungi possess extracellular lignin modified enzymes (LMEs) made up of laccases (Lac), manganese peroxidase (MnP), lignin peroxidase (LiP), and versatile peroxidase (VP) that are not specific to a particular substrate, causes opening of aromatic rings and cleavage of bonds through oxidation and reduction among many other pathways. The physiology of WRF, non specificity of LMEs coupled with varying intracellular enzymes such as cytochrome P450 removes pollutants through biodegradation, biosorption, bioaccumulation, biomineralization, and biotransformation, among many other mechanisms. The application of WRF on a laboratory and pilot scale has provided positive outcomes; however, there are a couple of limitations encountered when applied in the field, which can be overcome through improvement in the genome of promising strains.&nbsp;<br>
6

Lowenstam, Heinz A., e Stephen Weiner. "Protoctista". In On Biomineralization. Oxford University Press, 1989. http://dx.doi.org/10.1093/oso/9780195049770.003.0006.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
This kingdom is denned by exclusion, in that its members are neither animals, plants, fungi, nor prokaryotes. They comprise eukaryotic microorganisms and their immediate descendants (Margulis and Schwartz 1988). Of the 27 phyla that make up this kingdom, no less than 17 contain members that form mineralized hard parts. Although the vast majority of Protoctista are microorganisms, their smallness does not in any way imply an inability to control their biomineralization processes. On the contrary, many of the mineralizing Protoctista form very elaborate and complex structures. D’Arcy Thompson was one of many natural scientists who was both intrigued and fascinated by their skeletal morphologies. A perusal of his book On Growth and Form shows beautifully illustrated examples of protoctist skeletons and the text reveals a rare insight into some of the forces that govern their structure-forming processes. In the Radiolaria, for example, Thompson (1942) concludes that “the symmetry which the organism displays seems identical with that symmetry offerees which results from the play and interplay of surface- tensions in the whole system: this symmetry being displayed, in one class of cases, in a more or less spherical mass of froth, and in another class in a simpler aggregation of a few, otherwise isolated, vesicles” (p. 723). Although elegant and simple, physicochemical processes of interfacial chemistry are not sufficient to explain the complex, genetically controlled morphologies of many radiolarian species. Skeletal morphology is most likely the product of the delicate interplay between biologically controlled and physicochemically controlled processes (Anderson 1986). This is a recurring theme in biomineralization. Not all the protoctists are expert mineralizers. In fact they exhibit the whole spectrum of mineralization processes, from uncontrolled to finely tuned. Within the foraminifera and testate amoeba, among the Rhizopoda, are examples in which this wide diversity is found even within an individual phylum. They both contain species that construct their tests entirely out of organic materials or organic materials reinforced with mineral grains scavenged from the environment. They also contain species in which the test is mineralized by the organism itself, and at least in the case of the foraminifera, this can occur both intracellularly and extracellularly (Lowenstam 1986).

Atti di convegni sul tema "Intracellular biomineralization":

1

Gaëtan, Juliette, Karim Benzerara, Neha Mehta, Elodie Duprat, Fériel Skouri-Panet, Muriel Gugger, Cécile Bernard, Charlotte Duval, Apolline Bruley e Julie Leloup. "Microbial ecology of intracellular calcium carbonate biomineralization by bloom-forming cyanobacteria". In Goldschmidt2021. France: European Association of Geochemistry, 2021. http://dx.doi.org/10.7185/gold2021.7056.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Vai alla bibliografia