Letteratura scientifica selezionata sul tema "Interparticle forces"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Interparticle forces".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Interparticle forces"
Ishida, Naoyuki. "1. Particle Characteristics and Measurement 1.9 Interparticle Forces 1.9.5 Interparticle Forces and Simulation". Journal of the Society of Powder Technology, Japan 55, n. 12 (10 dicembre 2018): 645–47. http://dx.doi.org/10.4164/sptj.55.645.
Testo completoIshida, Naoyuki, e Shuji Matsusaka. "1.9.6 Summary of Interparticle Forces". Journal of the Society of Powder Technology, Japan 55, n. 12 (10 dicembre 2018): 648. http://dx.doi.org/10.4164/sptj.55.648.
Testo completoColbeck, I., e J. Amass. "Electrostatic interparticle forces -pharmaceutical aerosols". Journal of Aerosol Science 28 (settembre 1997): S283—S284. http://dx.doi.org/10.1016/s0021-8502(97)85142-7.
Testo completoColbeck, I., e J. Amass. "Dispersive interparticle forces -pharmaceutical aerosols". Journal of Aerosol Science 29 (settembre 1998): S765—S766. http://dx.doi.org/10.1016/s0021-8502(98)90565-1.
Testo completoColbeck, I., e J. Amass. "Polarisation interparticle forces -pharmaceutical aerosols". Journal of Aerosol Science 29 (settembre 1998): S767—S768. http://dx.doi.org/10.1016/s0021-8502(98)90566-3.
Testo completoLuckham, P. F. "The measurement of interparticle forces". Powder Technology 58, n. 2 (giugno 1989): 75–91. http://dx.doi.org/10.1016/0032-5910(89)80019-1.
Testo completoSigmund, W. M., J. Sindel e F. Aldinger. "AFM-studies of interparticle forces". Progress in Colloid & Polymer Science 105, n. 1 (dicembre 1997): 23–26. http://dx.doi.org/10.1007/bf01188919.
Testo completoWang, Y. H., e W. K. Siu. "Structure characteristics and mechanical properties of kaolinite soils. II. Effects of structure on mechanical properties". Canadian Geotechnical Journal 43, n. 6 (1 giugno 2006): 601–17. http://dx.doi.org/10.1139/t06-027.
Testo completoSeville, J. P. K., C. D. Willett e P. C. Knight. "Interparticle forces in fluidisation: a review". Powder Technology 113, n. 3 (dicembre 2000): 261–68. http://dx.doi.org/10.1016/s0032-5910(00)00309-0.
Testo completoSeipenbusch, M., S. Rothenbacher, M. Kirchhoff, H. J. Schmid, G. Kasper e A. P. Weber. "Interparticle forces in silica nanoparticle agglomerates". Journal of Nanoparticle Research 12, n. 6 (27 settembre 2009): 2037–44. http://dx.doi.org/10.1007/s11051-009-9760-5.
Testo completoTesi sul tema "Interparticle forces"
Crawford, R. J. "Interparticle forces in clay minerals". Thesis, University of Oxford, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.291033.
Testo completoHumes, R. "Interparticle forces in clay minerals". Thesis, University of Oxford, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.370276.
Testo completoCostello, Bernard Anthony de Lacy. "Direct and rheological methods for measuring interparticle forces". Thesis, Imperial College London, 1990. http://hdl.handle.net/10044/1/47822.
Testo completoSeville, Jonathan. "Interparticle forces in fluidised bed filtration of hot gases". Thesis, University of Surrey, 1987. http://epubs.surrey.ac.uk/844391/.
Testo completoNguyen, le Anh Vu. "Interparticle friction and Rheology of Dense suspensions". Electronic Thesis or Diss., Université Paris sciences et lettres, 2021. http://www.theses.fr/2021UPSLS085.
Testo completoSuspensions - a type of material consisted of solid particles dispersed in a liquid medium— are omnipresent in our daily life and in industry. Their key characteristic is the shear stress required to make them flow at a desire shear rate: this attribute is the area of interest of Rheology. Recently, it emerged that the friction between the particles impact the rheology of concentrated suspensions. This microscopic interaction can be altered by modifying the particle surface or, especially, by changing the liquid medium. In this thesis, we are looking to evidence and characterize the effect of interparticle friction on the rheological behaviors of suspension in the dense regime. We found that suspensions of same particles behave differently (Newtonian or shear-thinning) depending on the solvents utilized. Furthermore, their flow curve can be connected to the measurement of friction coefficient as a function of the normal force applied on the particles. Our work help paving the way for studies on effects of forces at microscopic scale on the bulk rheology
Chin, Ching-Ju. "Aggregation of colloidal particles and breakup of aggregates : probing interparticle forces". Diss., Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/21276.
Testo completoChou, Yi-Ping. "Improving the strength of ceramics by controlling the interparticle forces and rheology of the ceramic suspensions". Thesis, Imperial College London, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.248369.
Testo completoArai, Nozomi. "Self-Assembly of Colloidal Particles with Controlled Interaction Forces". Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263693.
Testo completoBadran, Youssef. "Modélisation multi-échelle des forces d'adhésion dans les lits fuidisés gaz-solide". Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSEP111.
Testo completoThe overshoot in bed pressure drop at the minimum fluidization velocity, occurring during the transition from a fixed to a fluidized bed state, is a common phenomenon for fine particles categorized under Group A according to Geldart's classification. These particles exhibit hysteresis between the pressure drop curves for the decreasing and increasing gas velocity paths. This study employs two adhesive particle pressure models within two-fluid model simulations to incorporate the influence of interparticle Van der Waals force, aiming to predict the pressure overshoot. The first adhesive pressure model, developed within the kinetic theory of rapid granular flows framework, failed to capture the overshoot due to the prevalence of multiple and prolonged contacts in fixed beds. We proposed an alternative closure based on coordination number, generating a significantly higher adhesive contribution than the kinetic theory model and successfully reproducing the pressure drop overshoot.In addition, we constructed a Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) numerical database to predict hysteresis in pressure drop. This database can guide the formulation of an Eulerian transport equation for the coordination number, enabling the incorporation of deformation history effects. We explored the impact of Van der Waals force and static friction on the fluidization of fine solids at the mesoscale using CFD-DEM simulations and their role in causing the pressure overshoot phenomenon. Our analysis examines parameters such as gas pressure drop, bed voidage, coordination number, repulsive and adhesive solid pressures, vertical solid velocity gradient, fabric tensor, and particle-wall shear stress throughout the defluidization and fluidization processes. We demonstrated that it is necessary to consider the Van der Waals adhesion to predict the homogeneous expansion of the bed across the range of velocities from the minimum required for fluidization to the minimum for bubbling. The generated CFD-DEM dataset can guide the development of solid stress closures for two-fluid models to incorporate the effects of Van der Waals adhesion and static friction on fluidization hydrodynamics, allowing for the prediction of hysteresis in bed pressure drop at the macroscale.In this work, we incorporated a static-dynamic friction model into the massively parallel CFD-DEM code YALES2 using a two-step algorithm, aiming to address the shortcomings of the Coulomb dynamic friction model, which is practical for fast granular flows but not applicable to stationary beds. We validated our implementation through a series of macro- and microscale tests. Furthermore, we introduced interparticle and particle-wall Van der Waals forces into YALES2 and validated this addition at the microscale. Additionally, we postulated a relaxation expression for the source term in the coordination number transport equation and determined the coordination number relaxation time using CFD-DEM simulation data. Moreover, we employed a penalization technique to semi-implicitly couple gas and solid phases, specifically through the implicit handling of drag and Archimedes forces. This approach aimed to resolve the stability issues encountered when the interphase coupling is explicit
Tyrell, James W. G. "The influence of relative humidity on interparticle force". Thesis, University of Surrey, 1999. http://epubs.surrey.ac.uk/844097/.
Testo completoLibri sul tema "Interparticle forces"
Ells, Thomas S. The effects of interparticle forces in fluidized beds. Ann Arbor, MI: University Microfilms International, 1988.
Cerca il testo completoPandit, Jai Kant. Role of interparticle forces in fluidization. 2004.
Cerca il testo completoLee, Woo-Kul. The effect of interparticle forces on fluidization regimes: A study of magnetized fluidized beds. 1994.
Cerca il testo completoCapitoli di libri sul tema "Interparticle forces"
Wong, Anthony Chi-Ying. "Interparticle Forces". In Powder Technology in Plastics Processing, 121–26. München: Carl Hanser Verlag GmbH & Co. KG, 2021. http://dx.doi.org/10.3139/9781569908709.008.
Testo completoChi-Ying Wong, Anthony. "Interparticle Forces". In Powder Technology in Plastics Processing, 121–26. München, Germany: Carl Hanser Verlag GmbH & Co. KG, 2021. http://dx.doi.org/10.1007/978-1-56990-870-9_8.
Testo completoLow, Philip F. "Interparticle Forces of Clays". In Advances in Fine Particles Processing, 209–26. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-7959-1_17.
Testo completoRietema, K. "Theoretical Derivation of Interparticle Forces". In The Dynamics of Fine Powders, 65–94. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3672-3_4.
Testo completoGoodwin, J. W. "Rheological Properties, Interparticle Forces and Suspension Structure". In The Structure, Dynamics and Equilibrium Properties of Colloidal Systems, 659–79. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-011-3746-1_44.
Testo completoLowke, D. "Interparticle Forces and Rheology of Cement Based Suspensions". In Nanotechnology in Construction 3, 295–301. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00980-8_39.
Testo completoMurray, R. S., e J. P. Quirk. "Interparticle Forces in Relation to the Stability of Soil Aggregates". In NATO ASI Series, 439–61. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4899-2611-1_16.
Testo completoKono, H. O., e T. Hikosaka. "The Effect of Interparticle Forces on the Separation of Fine Powders from Gas-Solid Two Phase Flow". In Developments in Food Engineering, 247–49. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2674-2_75.
Testo completo"Intermolecular and Interparticle Forces". In Introduction to Applied Colloid and Surface Chemistry, 11–33. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118881194.ch2.
Testo completoDávila Romero, Luciana C., e David L. Andrews. "Nanoscale Optics: Interparticle Forces". In Structured Light and Its Applications, 79–105. Elsevier, 2008. http://dx.doi.org/10.1016/b978-0-12-374027-4.00004-9.
Testo completoAtti di convegni sul tema "Interparticle forces"
Jazayeri, Amir M., Sohila Abdelhafiz e Aristide Dogariu. "Nonreciprocal Interparticle Forces in Kerker Dimers". In CLEO: Science and Innovations. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_si.2023.sw4p.4.
Testo completoYifat, Yuval, Delphine Coursault, Curtis W. Peterson, John Parker e Norbert F. Scherer. "Interparticle separation dependent dynamics in optical matter (Conference Presentation)". In Complex Light and Optical Forces XII, a cura di David L. Andrews, Enrique J. Galvez e Jesper Glückstad. SPIE, 2018. http://dx.doi.org/10.1117/12.2291251.
Testo completoBradshaw, David S., e David L. Andrews. "Near-field manipulation of interparticle forces through resonant absorption, optical binding, and dispersion forces". In SPIE NanoScience + Engineering, a cura di Kishan Dholakia e Gabriel C. Spalding. SPIE, 2013. http://dx.doi.org/10.1117/12.2022008.
Testo completoJust, Marvin, Alexander Medina Peschiutta, Ralph Useldinger e Jörg Baller. "Maximum in Mass Flow Rates of Hard Metal Granules through Circular Orifices in Relation to the Angle of Repose". In Euro Powder Metallurgy 2023 Congress & Exhibition. EPMA, 2023. http://dx.doi.org/10.59499/ep235765170.
Testo completoPerminov, S. V., V. P. Drachev e S. G. Rautian. "Motion bistability of the plasmon nanoaggregate due to the light induced interparticle forces". In 11th European Quantum Electronics Conference (CLEO/EQEC). IEEE, 2009. http://dx.doi.org/10.1109/cleoe-eqec.2009.5192420.
Testo completoTuchiyama, Takahiro, e Hitoshi Takase. "Influence of Interparticle Forces on Structure of Agglomerates by Two-Stage Wet Agglomeration". In 5th Asian Particle Technology Symposium. Singapore: Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-2518-1_270.
Testo completoKong, Jie, Jorge Carmona-Reyes e Truell W. Hyde. "Interparticle Forces Between the Upper and Lower Particles in a Vertically Aligned Dust Particle Chain". In 2007 IEEE Pulsed Power Plasma Science Conference. IEEE, 2007. http://dx.doi.org/10.1109/ppps.2007.4345994.
Testo completoMeng, Fanhe, Jin Liu e Robert F. Richards. "Molecular Dynamics Study on Thermal Resistance Between Amorphous Silica Nanoparticles". In ASME 2017 Heat Transfer Summer Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/ht2017-4894.
Testo completoBarbely, Natasha L., Sorin I. Pirau e Narayanan M. Komerath. "Measurements of Wall Formation Forces in an Acoustic Resonator". In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-63307.
Testo completoLai´n, S., e M. Sommerfeld. "Structure and Pressure Drop in Particle-Laden Gas Flow Through a Pipe Bend: A Numerical Analysis by the Euler/Lagrange Approach". In ASME 2009 Fluids Engineering Division Summer Meeting. ASMEDC, 2009. http://dx.doi.org/10.1115/fedsm2009-78090.
Testo completoRapporti di organizzazioni sul tema "Interparticle forces"
Beloborodov, Dmitry, e Alexey Vishnyakov. Modeling of interparticle forces modified with mobile surfactant chains. Peeref, luglio 2023. http://dx.doi.org/10.54985/peeref.2307p1085993.
Testo completoBradford, Joe, Itzhak Shainberg e Lloyd Norton. Effect of Soil Properties and Water Quality on Concentrated Flow Erosion (Rills, Ephermal Gullies and Pipes). United States Department of Agriculture, novembre 1996. http://dx.doi.org/10.32747/1996.7613040.bard.
Testo completo