Letteratura scientifica selezionata sul tema "Interface phenomenon"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Interface phenomenon".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Interface phenomenon"
Agrawal, S. "Bubble dynamics and interface phenomenon". Journal of Engineering and Technology Research 5, n. 3 (31 marzo 2013): 42–50. http://dx.doi.org/10.5897/jetr2013.0297.
Testo completoDai, Jinghang, e Zhiting Tian. "Nanoscale thermal interface rectification in the quantum regime". Applied Physics Letters 122, n. 12 (20 marzo 2023): 122204. http://dx.doi.org/10.1063/5.0143038.
Testo completoROJAS, RENÉ G., RICARDO G. ELÍAS e MARCEL G. CLERC. "DYNAMICS OF AN INTERFACE CONNECTING A STRIPE PATTERN AND A UNIFORM STATE: AMENDED NEWELL–WHITEHEAD–SEGEL EQUATION". International Journal of Bifurcation and Chaos 19, n. 08 (agosto 2009): 2801–12. http://dx.doi.org/10.1142/s0218127409024499.
Testo completoHabert, J., T. Machej e T. Czeppe. "The phenomenon of wetting at solid/solid interface". Surface Science Letters 151, n. 1 (marzo 1985): A80. http://dx.doi.org/10.1016/0167-2584(85)90633-4.
Testo completoHaber, J., T. Machej e T. Czeppe. "The phenomenon of wetting at solid/solid interface". Surface Science 151, n. 1 (marzo 1985): 301–10. http://dx.doi.org/10.1016/0039-6028(85)90468-6.
Testo completoRezaee, Nastaran, John Aunna e Jamal Naser. "Marangoni Flow Investigation in Foam Fractionation Phenomenon". Fluids 8, n. 7 (18 luglio 2023): 209. http://dx.doi.org/10.3390/fluids8070209.
Testo completoYin, Lan, S. Balaji e S. Seetharaman. "Effects of Nickel on Interface Morphology during Oxidation of Fe-Cu-Ni Alloys". Defect and Diffusion Forum 297-301 (aprile 2010): 318–29. http://dx.doi.org/10.4028/www.scientific.net/ddf.297-301.318.
Testo completoFujii, Nobutoshi, Shunsuke Furuse, Hirotaka Yoshioka, Naoki Ogawa, Taichi Yamada, Takaaki Hirano, Suguru Saito, Yoshiya Hagimoto e Hayato Iwamoto. "(Invited) Bonding Strength of Cu-Cu Hybrid Bonding for 3D Integration Process". ECS Transactions 112, n. 3 (29 settembre 2023): 3–14. http://dx.doi.org/10.1149/11203.0003ecst.
Testo completoKorpan, Lidiya. "Cultural Phenomenon Attributes in the Graphic User Interface Design". Vestnik Volgogradskogo gosudarstvennogo universiteta. Serija 7. Filosofiya. Sociologiya i socialnye tehnologii, n. 1 (maggio 2016): 130–36. http://dx.doi.org/10.15688/jvolsu7.2016.1.17.
Testo completoKushwaha, R. L., e J. Shen. "Numeric Simulation of Friction Phenomenon at Soil-Tool Interface". Tribology Transactions 38, n. 2 (gennaio 1995): 424–30. http://dx.doi.org/10.1080/10402009508983424.
Testo completoTesi sul tema "Interface phenomenon"
Ramos, Roberto Luiz da Cunha Barroso. "Aeroservoelastic analysis of the blade-sailing phenomenon in the helicopter-ship dynamic interface". Instituto Tecnológico de Aeronáutica, 2007. http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=368.
Testo completoBunting, I. "An ethnographic study of the development interface : knowledge, power, culture and the phenomenon of the development community". Thesis, Swansea University, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.636175.
Testo completoSeth, Umesh Kumar. "Message Passing Interface parallelization of a multi-block structured numerical solver. Application to the numerical simulation of various typical Electro-Hydro-Dynamic flows". Thesis, Poitiers, 2019. http://www.theses.fr/2019POIT2264/document.
Testo completoSeveral intricately coupled applications of modern industries fall under the multi-disciplinary domain of Electrohydrodynamics (EHD), where the interactions among charged and neutral particles are studied in context of both fluid dynamics and electrostatics together. The charge particles in fluids are generated with various physical mechanisms, and they move under the influence of external electric field and the fluid velocity. Generally, with sufficient electric force magnitudes, momentum transfer occurs from the charged species to the neutral particles also. This coupled system is solved with the Maxwell equations, charge transport equations and Navier-Stokes equations simulated sequentially in a common time loop. The charge transport is solved considering convection, diffusion, source terms and other relevant mechanisms for species. Then, the bulk fluid motion is simulated considering the induced electric force as a source term in the Navier-Stokes equations, thus, coupling the electrostatic system with the fluid. In this thesis, we numerically investigated some EHD phenomena like unipolar injection, conduction phenomenon in weakly conducting liquids and flow control with dielectric barrier discharge (DBD) plasma actuators.Solving such complex physical systems numerically requires high-end computing resources and parallel CFD solvers, as these large EHD models are mathematically stiff and highly time consuming due to the range of time and length scales involved. This thesis contributes towards advancing the capability of numerical simulations carried out within the EFD group at Institut Pprime by developing a high performance parallel solver with advanced EHD models. Being the most popular and specific technology, developed for the distributed memory platforms, Message Passing Interface (MPI) was used to parallelize our multi-block structured EHD solver. In the first part the parallelization of our numerical EHD solver with advanced MPI protocols such as Cartesian topology and Inter-Communicators is undertaken. In particular a specific strategy has been designed and detailed to account for the multi-block structured grids feature of the code. The parallel code has been fully validated through several benchmarks, and scalability tests carried out on up to 1200 cores on our local cluster showed excellent parallel speed-ups with our approach. A trustworthy database containing all these validation tests carried out on multiple cores is provided to assist in future developments. The second part of this thesis deals with the numerical simulations of several typical EHD flows. We have examined three-dimensional electroconvection induced by unipolar injection between two planar-parallel electrodes. Unsteady hexagonal cells were observed in our study. 3D flow phenomenon with electro-convective plumes was also studied in the blade-plane electrode configuration considering both autonomous and non-autonomous injection laws. Conduction mechanism based on the dissociation of neutral molecules of a weakly conductive liquid has been successfully simulated. Our results have been validated with some numerical computations undertaken with the commercial code Comsol. Physical implications of Robin boundary condition and Onsager effect on the charge species were highlighted in electro-conduction in a rectangular channel. Finally, flow control using Dielectric Barrier Discharge plasma actuator has been simulated using the Suzen-Huang model. Impacts of dielectric thickness, gap between the electrodes, frequency and waveform of applied voltage etc. were investigated in terms of their effect on the induced maximum ionic wind velocity and average body force. Flow control simulations with backward facing step showed that a laminar flow separation could be drastically controlled by placing the actuator at the tip of the step with both electrodes perpendicular to each other
Li, Hao. "Approche multi-échelle pour les écoulements polyphasiques en présence de phénomènes interfaciaux". Electronic Thesis or Diss., Université de Lorraine, 2024. http://www.theses.fr/2024LORR0081.
Testo completoInterfacial phenomena as a research domain have attracted focus and resources from areas of industrial and fundamental interests: cosmetics, printing, food industries, and glass productions, etc. What charms the defender most is the phenomena with drops and bubbles - their processes of coalescing, spreading, draining, and bursting - involving non-Newtonian fluids. Multiple experimental methods such as ultra-high-speed DC electrical acquisition system, high-speed camera and high-speed micro-PIV were jointly adopted for the investigation. The first part focused on experimental research on initial contact and spreading (coalescing) of a non-Newtonian drop on a solid (liquid) planar surface. The evolution of the electrical conductance in close relation with the drop spreading (coalescing) width was detected at first microseconds. Spreading (coalescing) behaviors of an opaque dispersion of nanoparticles was examined. Regimes and mechanism behind were revealed via dimensionless scaling. The quantification of flow fields inside a spreading (coalescing) drop was performed. The second part comparatively investigated the lifetime and bursting behavior of a single bubble at different liquid surfaces and through particle-laden liquid surfaces. Bubble cap thickness was quantitatively compared based on the high-speed imaging results. Velocity fields and profiles around bubble cavity were drafted and analyzed. The role of particle layer, together with fluids’ viscoelasticity, was confirmed in the shift for a bubble from a quick rupture death to a slow shrinking disappearance. The last part studied the coalescence of a non-Newtonian drop with its bulk phase through particle-laden air-liquid surfaces. A characteristic evaluation of speed fields within the drop and the bulk was conducted. An electrical signal analysis was carried out to highlight the difference with the coalescence of a drop with particle-free surfaces. The complicate role of particle layer as a barrier and bridge at the same time was confirmed and its relationship with fluid’s viscoelasticity was demonstrated
Bao, Qinye. "Interface Phenomena in Organic Electronics". Doctoral thesis, Linköpings universitet, Ytors Fysik och Kemi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-118922.
Testo completoVillanueva, Walter. "Diffuse-Interface Simulations of Capillary Phenomena". Doctoral thesis, Stockholm : Kungl. tekniska högskolan, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4402.
Testo completoZahedi, Sara. "Numerical Modeling of Fluid Interface Phenomena". Licentiate thesis, Stockholm : Skolan för datavetenskap och kommunikation, Kungliga Tekniska högskolan, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10507.
Testo completoWheale, Samantha Hilary. "Physicochemical phenomena at the plasma-polymer interface". Thesis, Durham University, 1997. http://etheses.dur.ac.uk/4977/.
Testo completoQuinn, Amy May. "The study of contact phenomena using ultrasound". Thesis, University of Bristol, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.271847.
Testo completoChiu, Patrick Y. "Computational modeling of atomistic phenomena at the interface". [Gainesville, Fla.] : University of Florida, 2009. http://purl.fcla.edu/fcla/etd/UFE0024892.
Testo completoLibri sul tema "Interface phenomenon"
Blake, J. R., J. M. Boulton-Stone e N. H. Thomas, a cura di. Bubble Dynamics and Interface Phenomena. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0938-3.
Testo completoF, Hewitt G., Mayinger F. 1931-, Riznic J e International Center for Heat and Mass Transfer., a cura di. Phase-interface phenomena in multiphase flow. New York: Hemisphere Pub. Corp., 1991.
Cerca il testo completoValerii, Cheshkov, e Natova Margarita, a cura di. Polymer composite materials: Interface phenomena & processes. Dordrecht: Kluwer Academic Publishers, 2001.
Cerca il testo completoIvanov, Yatchko, Valerii Cheshkov e Margarita Natova. Polymer Composite Materials — Interface Phenomena & Processes. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-9664-5.
Testo completoSellers, Harrell Lee, e Joseph Thomas Golab, a cura di. Theoretical and Computational Approaches to Interface Phenomena. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-1319-7.
Testo completoDosch, Helmut, a cura di. Critical Phenomena at Surfaces and Interfaces. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/bfb0045209.
Testo completoKryukov, Alexei, Vladimir Levashov e Yulia Puzina. Non-Equilibrium Phenomena near Vapor-Liquid Interfaces. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00083-1.
Testo completoNizzoli, Fabrizio, Karl-Heinz Rieder e Roy F. Willis, a cura di. Dynamical Phenomena at Surfaces, Interfaces and Superlattices. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-82535-4.
Testo completo1944-, Wandelt K., e Thurgate S. 1952-, a cura di. Solid-liquid interfaces: Macroscopic phenomena, microscopic understanding. Berlin: Springer, 2003.
Cerca il testo completoD, Beysens, Boccara Nino, Forgács G e Centre de physique des Houches, a cura di. Dynamical phenomena at interfaces, surfaces and membranes. Commack, N.Y: Nova Science Publishers, 1993.
Cerca il testo completoCapitoli di libri sul tema "Interface phenomenon"
Tiskin, Daniel. "Intentional Identity as a Transparency Phenomenon". In Pronouns in Embedded Contexts at the Syntax-Semantics Interface, 43–73. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56706-8_2.
Testo completoLiu, Yaohui, Zhenming He, Sirong Yu e Qingchun Li. "Interface Phenomenon between Al2O3/ A1—4.5Cu—Ce Alloy Compositeo①". In MICC 90, 485–90. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3676-1_83.
Testo completoHubaut, R., A. Rives, O. Lapina, D. Khabilulin e C. E. Scott. "Synergy Phenomenon in Bulk Ruthenium- Vanadium sulfides : 51V NMR and ESR studies". In Magnetic Resonance in Colloid and Interface Science, 531–36. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0534-0_50.
Testo completoBamyacı, Elif. "Measuring Animacy Effects on Verb Number Marking: A Semantics-Morphosyntax Interface Phenomenon". In Competing Structures in the Bilingual Mind, 75–114. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22991-1_5.
Testo completoBamyacı, Elif. "Measuring Effects of Topicality on Verb Number Marking: A Pragmatics-Morphosyntax Interface Phenomenon". In Competing Structures in the Bilingual Mind, 115–53. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22991-1_6.
Testo completoDu, Meifang. "The Research on Fishery Metadata in Bohai Sea Based on Semantic Web". In Proceeding of 2021 International Conference on Wireless Communications, Networking and Applications, 234–40. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2456-9_25.
Testo completoPrud’homme, Roger. "Interface Phenomena". In Flows of Reactive Fluids, 333–64. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4659-2_11.
Testo completoKondoh, Katsuyoshi, Nozomi Nakanishi, Rei Takei e Junko Umeda. "Effect of Reacted Layer on Galvanic Corrosion Phenomenon at Interface Between Ti Dispersion and Mg-Al Alloy". In Supplemental Proceedings, 93–100. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118062173.ch11.
Testo completoMiyamae, Takayuki, e Kouki Akaike. "Analysis of Molecular Surface/Interfacial Layer by Sum-Frequency Generation (SFG) Spectroscopy". In Interfacial Phenomena in Adhesion and Adhesive Bonding, 291–360. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4456-9_5.
Testo completoChierchia, Gennaro, Danny Fox e Benjamin Spector. "10. Scalar implicature as a grammatical phenomenon". In Semantics - Interfaces, a cura di Claudia Maienborn, Klaus Heusinger e Paul Portner, 325–67. Berlin, Boston: De Gruyter, 2019. http://dx.doi.org/10.1515/9783110589849-010.
Testo completoAtti di convegni sul tema "Interface phenomenon"
Landis, Christopher, Anna Iskhakova, Yoshiyuki Kondo, Koichi Tanimoto, Nam Dinh e Igor Bolotnov. "Interface Capturing Simulations and Analysis of Boiling Phenomenon in Complex Geometries". In 2024 International Congress on Advances in Nuclear Power Plants (ICAPP), 970–78. Illinois: American Nuclear Society, 2024. http://dx.doi.org/10.13182/t130-44116.
Testo completoFavretto-Cristini, N., e E. de Bazelaire. "Amplitude scattering phenomenon - is interface wave propagation guilty?" In EAGE/SEG Research Workshop on Reservoir Rocks - Understanding reservoir rock and fluid property distributions - measurement, modelling and applications. European Association of Geoscientists & Engineers, 2001. http://dx.doi.org/10.3997/2214-4609.201406735.
Testo completoAbe, Shinnosuke, Tomohiro Kawashima, Masayuki Nagao, Naohiro Hozumi, Yoshinobu Murakami, Naruto Miyakawa, Hiroki Shiota e Takao Tsurimoto. "Electrical treeing characteristics near multi-layer interface". In 2017 IEEE Conference on Electrical Insulation and Dielectric Phenomenon (CEIDP). IEEE, 2017. http://dx.doi.org/10.1109/ceidp.2017.8257487.
Testo completoZainuddin, H., P. M. Mitchinson e P. L. Lewin. "Investigation on the surface discharge phenomenon at the oil-pressboard interface". In 2011 IEEE 17th International Conference on Dielectric Liquids (ICDL). IEEE, 2011. http://dx.doi.org/10.1109/icdl.2011.6015439.
Testo completoSuemori, Kouji, Masahiro Hiramoto e Masaaki Yokoyama. "Influence of Oxygen on Photocurrent Multiplication Phenomenon at Organic/Metal Interface". In 2002 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2002. http://dx.doi.org/10.7567/ssdm.2002.c-4-3.
Testo completoLi, Chang-Jiu, Wen-Ya Li e H. Fukanuma. "Impact Fusion Phenomenon During Cold Spraying of Zinc". In ITSC2004, a cura di Basil R. Marple e Christian Moreau. ASM International, 2004. http://dx.doi.org/10.31399/asm.cp.itsc2004p0335.
Testo completoAldawsari, Faisal, Chitral J. Angammana e Shesha H. Jayaram. "Influence of interface on the electrical properties of silicone nanocomposites". In 2017 IEEE Conference on Electrical Insulation and Dielectric Phenomenon (CEIDP). IEEE, 2017. http://dx.doi.org/10.1109/ceidp.2017.8257645.
Testo completoFavretto-Cristini, Nathalie, e Eric de Bazelaire. "The Role Of Interface Waves And Diffracted Waves In The Amplitude Scattering Phenomenon". In 7th International Congress of the Brazilian Geophysical Society. European Association of Geoscientists & Engineers, 2001. http://dx.doi.org/10.3997/2214-4609-pdb.217.454.
Testo completoLiu, Ke. "Simulating the Approach-retract Phenomenon of AFM in Virtual Environment with Haptic Interface". In CAD'15 London. CAD Solutions LLC, 2015. http://dx.doi.org/10.14733/cadconfp.2015.101-106.
Testo completoLiu, Ke, e Xiaobo Peng. "Simulating the Approach-retract Phenomenon of AFM in Virtual Environment with Haptic Interface". In CAD'15. CAD Solutions LLC, 2015. http://dx.doi.org/10.14733/cadconfp.2015.89-93.
Testo completoRapporti di organizzazioni sul tema "Interface phenomenon"
Hwang, H. Y. Emergent Phenomena at Oxide Interfaces. Office of Scientific and Technical Information (OSTI), febbraio 2012. http://dx.doi.org/10.2172/1035095.
Testo completoFurtak, T. E. Potential modulation of equilibrium and excitation phenomena at the electrolyte-solid interface. Office of Scientific and Technical Information (OSTI), ottobre 1991. http://dx.doi.org/10.2172/6250728.
Testo completoArnoldus, Henk F., e Thomas F. George. Interference Phenomena in Atomic Emission Near an Interface: Pure Classical Effects in Quantum Radiation. Fort Belvoir, VA: Defense Technical Information Center, marzo 1989. http://dx.doi.org/10.21236/ada206700.
Testo completoGray, Alexander. Final Technical Report - Emergent Phenomena at Mott Interfaces – a Time- and Depth-Resolved Approach. Office of Scientific and Technical Information (OSTI), aprile 2024. http://dx.doi.org/10.2172/2335705.
Testo completoFurtak, T. E. Potential modulation of equilibrium and excitation phenomena at the electrolyte-solid interface. [Second harmonic generation; interfacial optical spectroscopy]. Office of Scientific and Technical Information (OSTI), ottobre 1992. http://dx.doi.org/10.2172/7204420.
Testo completoLu, Ping. In-situ Study of Dynamic Phenomena at Metal Nanosolder Interfaces Using Aberration Corrected Scanning Transmission Electron Microcopy. Office of Scientific and Technical Information (OSTI), ottobre 2014. http://dx.doi.org/10.2172/1159665.
Testo completoFurtak, T. E. Potential modulation of equilibrium and excitation phenomena at the electrolyte-solid interface. Progress report, October 31, 1991--September 30, 1992. Office of Scientific and Technical Information (OSTI), ottobre 1992. http://dx.doi.org/10.2172/10182768.
Testo completoShmulevich, Itzhak, Shrini Upadhyaya, Dror Rubinstein, Zvika Asaf e Jeffrey P. Mitchell. Developing Simulation Tool for the Prediction of Cohesive Behavior Agricultural Materials Using Discrete Element Modeling. United States Department of Agriculture, ottobre 2011. http://dx.doi.org/10.32747/2011.7697108.bard.
Testo completoDonner, Sebastian. Development of Carbon Based optically Transparent Electrodes from Pyrolyzed Photoresist for the Investigation of Phenomena at Electrified Carbon-Solution Interfaces. Office of Scientific and Technical Information (OSTI), gennaio 2007. http://dx.doi.org/10.2172/933140.
Testo completoPerdigão, Rui A. P. Earth System Dynamic Intelligence with Quantum Technologies: Seeing the “Invisible”, Predicting the “Unpredictable” in a Critically Changing World. Meteoceanics, ottobre 2021. http://dx.doi.org/10.46337/211028.
Testo completo