Letteratura scientifica selezionata sul tema "Intensional logic"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Intensional logic".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Articoli di riviste sul tema "Intensional logic"

1

Anderson, C. Anthony. "Zalta's intensional logic". Philosophical Studies 69, n. 2-3 (marzo 1993): 221–29. http://dx.doi.org/10.1007/bf00990086.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Majkić, Zoran. "Conservative Intensional Extension of Tarski's Semantics". Advances in Artificial Intelligence 2013 (26 febbraio 2013): 1–10. http://dx.doi.org/10.1155/2013/920157.

Testo completo
Abstract (sommario):
We considered an extension of the first-order logic (FOL) by Bealer's intensional abstraction operator. Contemporary use of the term “intension” derives from the traditional logical Frege-Russell doctrine that an idea (logic formula) has both an extension and an intension. Although there is divergence in formulation, it is accepted that the “extension” of an idea consists of the subjects to which the idea applies, and the “intension” consists of the attributes implied by the idea. From the Montague's point of view, the meaning of an idea can be considered as particular extensions in different possible worlds. In the case of standard FOL, we obtain a commutative homomorphic diagram, which is valid in each given possible world of an intensional FOL: from a free algebra of the FOL syntax, into its intensional algebra of concepts, and, successively, into an extensional relational algebra (different from Cylindric algebras). Then we show that this composition corresponds to the Tarski's interpretation of the standard extensional FOL in this possible world.
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Priest, Graham. "Intensional paradoxes." Notre Dame Journal of Formal Logic 32, n. 2 (marzo 1991): 193–211. http://dx.doi.org/10.1305/ndjfl/1093635745.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Leone, Nicola, Luigi Palopoli e Massimo Romeo. "MODIFYING INTENSIONAL LOGIC KNOWLEDGE". Fundamenta Informaticae 21, n. 3 (1994): 183–203. http://dx.doi.org/10.3233/fi-1994-2132.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

da Costa, Newton C. A., e Décio Krause. "An Intensional Schrödinger Logic". Notre Dame Journal of Formal Logic 38, n. 2 (aprile 1997): 179–94. http://dx.doi.org/10.1305/ndjfl/1039724886.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Fitting, Melvin. "First-order intensional logic". Annals of Pure and Applied Logic 127, n. 1-3 (giugno 2004): 171–93. http://dx.doi.org/10.1016/j.apal.2003.11.014.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Jiang, Yue J. "An intensional epistemic logic". Studia Logica 52, n. 2 (1993): 259–80. http://dx.doi.org/10.1007/bf01058391.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Bull, R. A., e Johan van Benthem. "A Manual of Intensional Logic." Journal of Symbolic Logic 54, n. 4 (dicembre 1989): 1489. http://dx.doi.org/10.2307/2274837.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Payne, Jonathan. "Extensionalizing Intensional Second-Order Logic". Notre Dame Journal of Formal Logic 56, n. 1 (2015): 243–61. http://dx.doi.org/10.1215/00294527-2835092.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Cocchiarella, Nino B. "Conceptualism, realism, and intensional logic". Topoi 8, n. 1 (marzo 1989): 15–34. http://dx.doi.org/10.1007/bf00138676.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Tesi sul tema "Intensional logic"

1

Martins, Francisco Gomes. "A lÃgica das entidades intensionais". Universidade Federal do CearÃ, 2012. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=8392.

Testo completo
Abstract (sommario):
nÃo hÃ
Um grave problema presente quando aplicamos semÃntica composicional, que atribui simples valores de verdade a frases, à que quando essas seqÃÃncias estÃo presentes em alguns contextos especÃficos, a substituiÃÃo de certas expressÃes com a mesma referÃncia pode cambiar o valor de verdade da frase maior ou entÃo impedir que inferÃncias vÃlidas sejam realizadas. Por exemplo, da afirmaÃÃo "Pedro acredita que Alexandre o Grande foi aluno de AristÃteles", nÃo se pode inferir corretamente neste contexto de crenÃa que a substituiÃÃo de "Alexandre o grande" por "o vencedor da batalha de Arbela" seja vÃlida porque eventualmente Pedro pode nÃo saber que "Alexandre o Grande à o vencedor da batalha de Arbela" e por isso a verdade das premissas nÃo garante a verdade da conclusÃo: "Pedro acredita que o vencedor da batalha de Arbela foi aluno de AristÃteles". A conclusÃo nÃo se segue pois ela nÃo depende da relaÃÃo de identidade efetiva entre âAlexandre o Grandeâ e âO vencedor da Arbelaâ, e sim depende, de maneira contingente, do conjunto de crenÃas de Pedro; ou ainda, segundo Frege, depende do sentido que Pedro associa a descriÃÃo âAlexandre o Grandeâ. Em contextos intensionais a verdade da conclusÃo (apÃs substituiÃÃo) depende de uma maneira especÃfica da maneira de conceber o nome em questÃo, por isso a substituiÃÃo entre nomes cujo referente à o mesmo, mas que diferem em sentido, nÃo funciona em todos os casos. O fato à que Frege nunca estabeleceu critÃrios de identidade para o sentido (Sinn), apenas reservou-se a declarar simplesmente que o sentido à o "modo de apresentaÃÃo" da referÃncia. Pretendemos apresentar critÃrios de identidade para o sentido em geral, e em contextos intensionais, em particular. Os sucessores de Frege, dentre eles o lÃgico Alonzo Church e o filÃsofo Rudolf Carnap foram os primeiros a estabelecer que duas expressÃes tÃm o mesmo sentido se e somente se sÃo sinonimamente isomorfas e intensionalmente isomorfas, respectivamente. Tais critÃrios devem ser entendidos à luz dos pressupostos lÃgicos de Church em sua LÃgica do Sentido e da DenotaÃÃo (LSD) e das idÃias de Carnap â muitas delas constituintes do programa filosÃfico do Positivismo lÃgico, em seu livro Meaning and Necessity. Mais recentemente, Pavel Tichà estabeleceu de maneira mais exata o que à o sentido e sua identidade atravÃs do Procedural isomorphism o qual constitui um dos fundamentos da LÃgica Intensional Transparente (TIL).
A feature of the distinction between extensionalism and intensionalism, which has been widely taken as a criterion to separate the two positions, is that within an extensionalist logic, substitution is possible salva veritate (that is, without thereby changing the truth-value of the statement concerned) with respect to identical instances of some basic logical form â and in an intensionalist logic it is not. The different logical forms with respect to which such substitution might take place accounts for some of the variety of different extensionalisms on offer in the current philosophical landscape. So our starting-point is Fregeâs puzzle. This question is frequently accepted as one of the foundations of modern semantics. To explain why a true sentence of the form âa = bâ can be informative, unlike a sentence of the form âa = aâ, Frege introduced an entity standing between an expression and the object denoted (bezeichnet) by the expression. He named this entity Sinn (sense) and explained the informative character of the true âa=bâ-shaped sentences by saying that âaâ and âbâ denote one and the same object but differ in expressing (ausdrÃcken) distinct senses. The problem, though, is that Frege never defined sense. The conception of senses as procedures that is developed here has much in common with a number of other accounts that represent meanings, also, as structured objects of various kinds, though not necessarily as procedures. In the modern literature, this idea goes back to Rudolph Carnapâs (1947) notion of intensional isomorphism. Church in (1954) constructs an example of expressions that are intensionally isomorphic according to Carnapâs definition (i.e., expressions that share the same structure and whose parts are necessarily equivalent), but which fail to satisfy the principle of substitutability. The problem Church tackled is made possible by Carnapâs principle of tolerance (which itself is plausible). We are free to introduce into a language syntactically simple expressions which denote the same intension in different ways and thus fail to be synonymous. TichÃâs objectualist take on âoperation-processesâ may be seen in part as linguistic structures transposed into an objectual key; operations, procedures, structures are not fundamentally and inherently syntactic items, but fully-fledged, non-linguistic entities, namely, constructions.
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Fritz, Peter. "Intensional type theory for higher-order contingentism". Thesis, University of Oxford, 2015. http://ora.ox.ac.uk/objects/uuid:b9415266-ad21-494a-9a78-17d2395eb8dd.

Testo completo
Abstract (sommario):
Things could have been different, but could it also have been different what things there are? It is natural to think so, since I could have failed to be born, and it is natural to think that I would then not have been anything. But what about entities like propositions, properties and relations? Had I not been anything, would there have been the property of being me? In this thesis, I formally develop and assess views according to which it is both contingent what individuals there are and contingent what propositions, properties and relations there are. I end up rejecting these views, and conclude that even if it is contingent what individuals there are, it is necessary what propositions, properties and relations there are. Call the view that it is contingent what individuals there are first-order contingentism, and the view that it is contingent what propositions, properties and relations there are higher-order contingentism. I bring together the three major contributions to the literature on higher-order contingentism, which have been developed largely independently of each other, by Kit Fine, Robert Stalnaker, and Timothy Williamson. I show that a version of Stalnaker's approach to higher-order contingentism was already explored in much more technical detail by Fine, and that it stands up well to the major challenges against higher-order contingentism posed by Williamson. I further show that once a mistake in Stalnaker's development is corrected, each of his models of contingently existing propositions corresponds to the propositional fragment of one of Fine's more general models of contingently existing propositions, properties and relations, and vice versa. I also show that Stalnaker's theory of contingently existing propositions is in tension with his own theory of counterfactuals, but not with one of the main competing theories, proposed by David Lewis. Finally, I connect higher-order contingentism to expressive power arguments against first-order contingentism. I argue that there are intelligible distinctions we draw with talk about "possible things", such as the claim that there are uncountably many possible stars. Since first-order contingentists hold that there are no possible stars apart from the actual stars, they face the challenge of paraphrasing such talk. I show that even in an infinitary higher-order modal logic, the claim that there are uncountably many possible stars can only be paraphrased if higher-order contingentism is false. I therefore conclude that even if first-order contingentism is true, higher-order contingentism is false.
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Blackburn, Patrick Rowan. "Nominal tense logic and other sorted intensional frameworks". Thesis, University of Edinburgh, 1990. http://hdl.handle.net/1842/6588.

Testo completo
Abstract (sommario):
This thesis introduces of a system of tense logic called nominal tense logic (NTL), and several extensions. Its primary aim is to establish that these systems are logically interesting, and can provide useful models of natural language tense, temporal reference, and their interaction. Languages of nominal tense logic are a simple augmentation of Priorean tense logic. They add to the familiar Priorean languages a new sort of atomic symbol, nominals. Like propositional variables, nominals are atomic sentences and may be freely combined with other wffs using the usual connectives. When interpreting these languages we handle the Priorean components standardly, but insist that nominals must be true at one and only one time. We can think of nominals as naming this time. Logically, the change increases the expressive power of tensed languages. There are certain intuitions about the flow of time, such as irreflexivity, that cannot be expressed in Priorean languages; with nominals they can. The effects of this increase in expressive power on the usual model theoretic results for tensed languages discussed, and completeness and decidability results for several temporally interesting classes of frames are given. Various extensions of the basic system are also investigated and similar results are proved. In the final chapter a brief treatment of similarly referential interval based logics is presented. As far as natural language semantics is concerned, the change is an important one. A familiar criticism of Priorean tense logic is that as it lacks any mechanism for temporal reference, it cannot provide realistic models of natural language temporal usage. Natural language tense is at least partly about referring to times, and nowadays the deictic and anaphoric properties of tense are a focus of research. The thesis presents a uniform treatment of certain temporally referring expressions such as indexicals, and simple discourse phenomena.
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Kavvos, Georgios Alexandros. "On the semantics of intensionality and intensional recursion". Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:f89b46d8-b514-42fd-9321-e2803452681f.

Testo completo
Abstract (sommario):
Intensionality is a phenomenon that occurs in logic and computation. In the most general sense, a function is intensional if it operates at a level finer than (extensional) equality. This is a familiar setting for computer scientists, who often study different programs or processes that are interchangeable, i.e. extensionally equal, even though they are not implemented in the same way, so intensionally distinct. Concomitant with intensionality is the phenomenon of intensional recursion, which refers to the ability of a program to have access to its own code. In computability theory, intensional recursion is enabled by Kleene's Second Recursion Theorem. This thesis is concerned with the crafting of a logical toolkit through which these phenomena can be studied. Our main contribution is a framework in which mathematical and computational constructions can be considered either extensionally, i.e. as abstract values, or intensionally, i.e. as fine-grained descriptions of their construction. Once this is achieved, it may be used to analyse intensional recursion. To begin, we turn to type theory. We construct a modal λ-calculus, called Intensional PCF, which supports non-functional operations at modal types. Moreover, by adding Löb's rule from provability logic to the calculus, we obtain a type-theoretic interpretation of intensional recursion. The combination of these two features is shown to be consistent through a confluence argument. Following that, we begin searching for a semantics for Intensional PCF. We argue that 1-category theory is not sufficient, and propose the use of P-categories instead. On top of this setting we introduce exposures, which are P-categorical structures that function as abstractions of well-behaved intensional devices. We produce three examples of these structures, based on Gödel numberings on Peano arithmetic, realizability theory, and homological algebra. The language of exposures leads us to a P-categorical analysis of intensional recursion, through the notion of intensional fixed points. This, in turn, leads to abstract analogues of classic intensional results in logic and computability, such as Gödel's Incompleteness Theorem, Tarski's Undefinability Theorem, and Rice's Theorem. We are thus led to the conclusion that exposures are a useful framework, which we propose as a solid basis for a theory of intensionality. In the final chapters of the thesis we employ exposures to endow Intensional PCF with an appropriate semantics. It transpires that, when interpreted in the P-category of assemblies on the PCA K1, the Löb rule can be interpreted as the type of Kleene's Second Recursion Theorem.
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Lavers, Peter Stanley. "Generating intensional logics : the application of paraconsistent logics to investigate certain areas of the boundaries of mathematics /". Title page, table of contents and summary only, 1985. http://web4.library.adelaide.edu.au/theses/09ARM/09arml399.pdf.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Fontaine, Matthieu. "Argumentation et engagement ontologique de l’acte intentionnel : Pour une réflexion critique sur l’identité dans les logiques intentionnelles explicites". Thesis, Lille 3, 2013. http://www.theses.fr/2013LIL30025/document.

Testo completo
Abstract (sommario):
L'intentionalité est la faculté qu'a l'esprit humain de se diriger vers des objets de toutes sortes. On la capture linguistiquement à travers l'usage de verbes comme "savoir", "croire", "craindre", "espérer". Les énoncés intentionnels comme "Jean croit que Nosferatu est un vampire" ou "Oedipe aime Jocaste" défient les lois de la logique classique, remettant en cause la validité de principes logiques tels que la généralisation existentielle ou encore la substitution des identiques. Je propose dans ma thèse une analyse fondée sur les logiques intentionnelles explicites, des logiques où le langage est enrichi au moyen d'opérateurs qui expriment explicitement l'intentionalité. Des aspects originaux de la signification des énoncés intentionnels sont saisis au coeur des pratiques argumentatives, dans le contexte de la logique dialogique notamment. S'intéressant plus spécifiquement au cas de la fictionalité, paradigme où se mêlent naturellement considérations logiques, linguistiques et métaphysiques, je défends une théorie artefactuelle dans laquelle on définit des critères d'existence et d'identité pour les identités fictionnelles littéraires au moyen de la notion de relation de dépendance ontologique. La notion de dépendance ontologique est toutefois sujette à de graves difficultés que l'on repasse ici dans le contexte d'une sémantique modale-Temporelle, défendant alors une approche novatrice de la dimension artefactuelle des fictions. In fine, on propose une combinaison de la théorie artefactuelle à une sémantique pour l'opérateur de fictionalité qui permet l'articulation entre différents points de vue sur la fiction, les points de vue interne et externe notamment
Intentionality is that faculty of human mind whereby it is directed towards objects of all kinds. It is recorded linguistically in verbs such as "to know", "to believe", "to fear", "to hope". Intentional statements such as "John thinks that Nosferatu is a vampire" or "Oedipus loves Jocasta" challenge classical logical laws such as existential generalization or substitution of identical. I propose here an analysis grounded on explicit intentional logics, i. e. logics in which languages are enriched by means of specific operators expressing intentionality. Some original aspects of the meanings of intentional statements are grasped within argumentative practices, more specifically in the context of dialogical logic. I focus more specifically on fictionality, a paradigm in which logical, linguistic and metaphysical considerations are naturally embedded. I defend an artifactual theory in which existence and identity criteria for fictional entities are defined by means of the notion of ontological dependence relation. That notion faces several difficulties overcome here in a modal-Temporal semantics in which an innovating approach to the artifactual diemnsion of fiction is defended. Ultimately, a combination of that theory to a semantic for the fictionality operator is suggested. This enable us to articulate external and internal viewpoints on fictionality
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Wansing, Heinrich. "Displaying modal logic /". Dordrecht [u.a.] : Kluwer, 1998. http://www.gbv.de/dms/ilmenau/toc/24662969X.PDF.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Wespel, Johannes. "Zur semantischen Feinstruktur in propositionalen Einstellungskontexten". [S.l. : s.n.], 2004. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB11244071.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Mertens, Amélie. "Nouvel éclairage sur la notion de concept chez Gödel à travers les Max-Phil". Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM3120/document.

Testo completo
Abstract (sommario):
Notre travail vise à étudier les Max-Phil, textes inédits de Kurt Gödel, dans lesquels il développe sa pensée philosophique. Nous nous intéressons plus spécifiquement à la question du réalisme conceptuel, position déjà défendue dans ses écrits publiés selon laquelle les concepts existent indépendamment de nos définitions et constructions. L’objectif est de montrer qu’une interprétation cohérente de ces textes encore peu connus est possible. Pour ce faire, nous proposons une interprétation de certains passages, interprétation hypothétique mais susceptible d’apporter de nouveaux éléments à des questions laissées sans réponse par les textes publiés, telles celles relatives au réalisme conceptuel. Cette dernière position ne peut être comprise que par un éclairage de la notion de concept chez Gödel. Les concepts sont des entités logiques objectives, au cœur du projet d’une théorie des concepts conçue comme une logique intentionnelle et inspirée de la scientia generalis de Leibniz. L’analyse des Max-Phil souligne que la notion de concept et la primauté du réalisme conceptuel sur le réalisme mathématique ne peuvent se comprendre qu’à la lumière du cadre métaphysique que se donne Gödel, à savoir d’une monadologie d’inspiration leibnizienne. Les Max-Phil offrent ainsi des indices sur la façon dont Gödel reprend et modifie la monadologie de Leibniz, afin, notamment, d’y inscrire les concepts. L’examen de ce cadre métaphysique tend également à éclaircir les rapports entre les concepts objectifs, les concepts subjectifs (tels que nous les connaissons), et les symboles (par lesquels nous exprimons les concepts), mais aussi les rapports entre logique et mathématiques
Our work aims at studying the unpublished texts of Kurt Gödel, known as the Max-Phil, in which the author develops his philosophical thought. This study follows the specific issue of conceptual realism which is adopted by Gödel in his published texts (during his lifetime or posthumously), and according to which concepts are independent of our definitions and constructions. We want to show that a consistent interpretation of the Max-Phil is possible. To do so, we propose an interpretation of some excerpts, which, even if it is only hypothetical, can give new elements in order to answer open questions of the published texts, e.g. questions about conceptual realism. This last position is not understandable without explaining Gödel’s notion of concept. For him, concepts are logical and objective entities, and they are at the core of a theory of concepts, which is conceived as an intensional logic, following Leibniz’s scientia generalis. The analysis of the Max-Phil underlines that we can understand the notion of concept and the primacy of conceptual realism over mathematical realism only in the light of Gödel’s metaphysical frame, i.e. of a monadology inspired by Leibniz. Thus the Max-Phil shows how Gödel reinvestigates Leibnizian monadology, and offers some clues on the modifications he makes on it in order to include concepts. The examination of this metaphysical frame tends to elucidate the relationships between objective concepts, subjective concepts (as we know them) and symbols (through which we express concepts), and also the relationship between logic and mathematics
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Rondogiannis, Panagiotis. "Higher-order functional languages and intensional logic". Thesis, 1994. http://hdl.handle.net/1828/5960.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Libri sul tema "Intensional logic"

1

Imre, Ruzsa. Intensional logic revisited. Budapest: Published by the author, L. Eötvös University, 1991.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

de Rijke, Maarten, a cura di. Advances in Intensional Logic. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8879-9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

J. F. A. K. van Benthem. A manual of intensional logic. Stanford, Calif: Center for the Study of Language and Information, 1985.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Center for the Study of Language and Information (U.S.), a cura di. A manual of intensional logic. 2a ed. Stanford, CA: Center for the Study of Language and Information, 1988.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Allan, Ramsay. WH-questions and intensional logic. [Brighton]: University of Sussex School of Cognitive Studies, 1988.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

A manual of intensional logic. Stanford: Center for the Study of Language and Information, Stanford University, 1985.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Fox, Chris. Foundations of intensional semantics. Malden MA: Blackwell Pub., 2005.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Slater, B. H. Intensional logic: An essay in analytical metaphysics. Aldershot [Hampshire, England]: Avebury, 1994.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Zalta, Edward N. Intensional logic and the metaphysics of intentionality. Cambridge, Mass: MIT Press, 1988.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Bjørn, Jespersen, Materna Pavel e SpringerLink (Online service), a cura di. Procedural Semantics for Hyperintensional Logic: Foundations and Applications of Transparent Intensional Logic. Dordrecht: Springer Science+Business Media B.V., 2010.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Capitoli di libri sul tema "Intensional logic"

1

Gochet, Paul. "Intensional logic". In Handbook of Pragmatics, 1–12. Amsterdam: John Benjamins Publishing Company, 2007. http://dx.doi.org/10.1075/hop.11.int2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Gochet, Paul. "Intensional logic". In Handbook of Pragmatics, 1–12. Amsterdam: John Benjamins Publishing Company, 2010. http://dx.doi.org/10.1075/hop.14.int2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Gochet, Paul. "Intensional logic". In Handbook of Pragmatics, 330–36. Amsterdam: John Benjamins Publishing Company, 1995. http://dx.doi.org/10.1075/hop.m.int2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Gochet, Paul. "Intensional logic". In Philosophical Perspectives for Pragmatics, 153–62. Amsterdam: John Benjamins Publishing Company, 2011. http://dx.doi.org/10.1075/hoph.10.13goc.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Goertzel, Ben, Matthew Iklé, Izabela Freire Goertzel e Ari Heljakka. "Intensional Inference". In Probabilistic Logic Networks, 1–16. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-76872-4_12.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Keenan, Edward L., e Leonard M. Faltz. "The Intensional Logic". In Boolean Semantics for Natural Language, 272–376. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-6404-4_4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Dovier, A., E. Pontelli e G. Rossi. "Intensional Sets in CLP". In Logic Programming, 284–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-24599-5_20.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Muñoz-Hernández, Susana, Julio Mariño e Juan José Moreno-Navarro. "Constructive Intensional Negation". In Functional and Logic Programming, 39–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24754-8_5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Fitting, Melvin. "Intensional Logic— Beyond First Order". In Trends in Logic, 87–108. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-3598-8_5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Braüner, Torben. "Intensional First-Order Hybrid Logic". In Applied Logic Series, 153–69. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-94-007-0002-4_7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Atti di convegni sul tema "Intensional logic"

1

Vokorokos, Liberios, Zuzana Bilanova e Daniel Mihalyi. "Linear logic operators in transparent intensional logic". In 2017 IEEE 14th International Scientific Conference on Informatics. IEEE, 2017. http://dx.doi.org/10.1109/informatics.2017.8327286.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Vlk, Tomas. "Topic/Focus articulation and intensional logic". In the 12th conference. Morristown, NJ, USA: Association for Computational Linguistics, 1988. http://dx.doi.org/10.3115/991719.991784.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Blot, Valentin, e Jim Laird. "Extensional and Intensional Semantic Universes". In LICS '18: 33rd Annual ACM/IEEE Symposium on Logic in Computer Science. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3209108.3209206.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Feng Jiang, Yuefei Sui e Cungen Cao. "An ontology-based first-order intensional logic". In 2008 IEEE International Conference on Granular Computing (GrC-2008). IEEE, 2008. http://dx.doi.org/10.1109/grc.2008.4664731.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Mokhov, Serguei A., e Joey Paquet. "Using the General Intensional Programming System (GIPSY) for Evaluation of Higher-Order Intensional Logic (HOIL) Expressions". In 2010 Eighth ACIS International Conference on Software Engineering Research, Management and Applications. IEEE, 2010. http://dx.doi.org/10.1109/sera.2010.23.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Mokhov, Serguei A., e Joey Paquet. "A Type System for Higher-Order Intensional Logic Support for Variable Bindings in Hybrid Intensional-Imperative Programs in GIPSY". In 2010 IEEE/ACIS 9th International Conference on Computer and Information Science (ICIS). IEEE, 2010. http://dx.doi.org/10.1109/icis.2010.156.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Birkedal, Lars, e Rasmus Ejlers Mogelberg. "Intensional Type Theory with Guarded Recursive Types qua Fixed Points on Universes". In 2013 Twenty-Eighth Annual IEEE/ACM Symposium on Logic in Computer Science (LICS 2013). IEEE, 2013. http://dx.doi.org/10.1109/lics.2013.27.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Castellan, Simon, Pierre Clairambault e Glynn Winskel. "The Parallel Intensionally Fully Abstract Games Model of PCF". In 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE, 2015. http://dx.doi.org/10.1109/lics.2015.31.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia