Letteratura scientifica selezionata sul tema "Intact monolith lysimeters"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Intact monolith lysimeters".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Articoli di riviste sul tema "Intact monolith lysimeters"

1

Wegehenkel, Martin, e Horst H. Gerke. "Water table effects on measured and simulated fluxes in weighing lysimeters for differently-textured soils". Journal of Hydrology and Hydromechanics 63, n. 1 (1 marzo 2015): 82–92. http://dx.doi.org/10.1515/johh-2015-0004.

Testo completo
Abstract (sommario):
Abstract Weighing lysimeters can be used for studying the soil water balance and to analyse evapotranspiration (ET). However, not clear was the impact of the bottom boundary condition on lysimeter results and soil water movement. The objective was to analyse bottom boundary effects on the soil water balance. This analysis was carried out for lysimeters filled with fine- and coarse-textured soil monoliths by comparing simulated and measured data for lysimeters with a higher and a lower water table. The eight weighable lysimeters had a 1 m2 grass-covered surface and a depth of 1.5 m. The lysimeters contained four intact monoliths extracted from a sandy soil and four from a soil with a silty-clay texture. For two lysimeters of each soil, constant water tables were imposed at 135 cm and 210 cm depths. Evapotranspiration, change in soil water storage, and groundwater recharge were simulated for a 3-year period (1996 to 1998) using the Hydrus-1D software. Input data consisted of measured weather data and crop model-based simulated evaporation and transpiration. Snow cover and heat transport were simulated based on measured soil temperatures. Soil hydraulic parameter sets were estimated (i) from soil core data and (ii) based on texture data using ROSETTA pedotransfer approach. Simulated and measured outflow rates from the sandy soil matched for both parameter sets. For the sand lysimeters with the higher water table, only fast peak flow events observed on May 4, 1996 were not simulated adequately mainly because of differences between simulated and measured soil water storage caused by ET-induced soil water storage depletion. For the silty-clay soil, the simulations using the soil hydraulic parameters from retention data (i) were matching the lysimeter data except for the observed peak flows on May, 4, 1996, which here probably resulted from preferential flow. The higher water table at the lysimeter bottom resulted in higher drainage in comparison with the lysimeters with the lower water table. This increase was smaller for the finer-textured soil as compared to the coarser soil.
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Nilsson, Bertel, Jens Aamand, Ole Stig Jacobsen e René K. Juhler. "Field experimental design for pesticide leaching – a modified large-scale lysimeter". Geological Survey of Denmark and Greenland (GEUS) Bulletin 7 (29 luglio 2005): 41–44. http://dx.doi.org/10.34194/geusb.v7.4830.

Testo completo
Abstract (sommario):
Recent research on Danish groundwater has focused on clarifying the fate and transport of pesticides that leach through clayey till aquitards with low matrix permeability. Previously, these aquitards were considered as protective layers against contamination of underlying groundwater aquifers due to their low permeability characteristics. However, geological heterogeneities such as fractures and macropores have been recognised as preferential flow paths within low permeable clayey till (e.g. Beven & Germann 1982). The flow velocities within these preferential flow paths can be orders of magnitude higher than in the surrounding clay matrix and pose a major risk of transport of contaminants to the underlying aquifers (e.g. Nilsson et al. 2001). Previous studies of transport in fractured clayey till have focused on fully saturated conditions (e.g. Sidle et al. 1998; McKay et al. 1999). However, seasonal fluctuations of the groundwater table typically result in unsaturated conditions in the upper few metres of the clay deposits, resulting in different flow and transport conditions. Only a few experiments have examined the influence of unsaturated conditions on flow and solute (the dissolved inorganic and organic constituents) transport in fractured clayey till. These include smallscale laboratory column experiments on undisturbed soil monoliths (e.g. Jacobsen et al. 1997; Jørgensen et al. 1998), intermediate scale lysimeters (e.g. Fomsgaard et al. 2003) and field-scale tile drain experiments (e.g. Kjær et al. 2005). The different approaches each have limitations in terms of characterising flow and transport in fractured media. Laboratory studies of solute transport in soils (intact soil columns) are not exactly representative of field conditions due to variations in spatial variability and soil structure. In contrast, field studies hardly allow quantification of fluxes and mechanisms of transport. Column and lysimeter experiments are often limited in size, and tile-drain experiments on field scale do not provide spatial resolution and often have large uncertainties in mass balance calculations. Thus, in order to represent the overall natural fracture network systems on a field scale with respect to acquiring insights into flow and transport processes, the lysimeter needs to be larger than normal lysimeter size (< 1 m3). A modified large-scale lysimeter was therefore constructed by the Geological Survey of Denmark and Greenland (GEUS) at the Avedøre experimental field site 15 km south of Copenhagen (Fig. 1). This lysimeter consisted of an isolated block (3.5 ×3.5 ×3.3 m) of unsaturated fractured clayey till with a volume sufficient to represent the overall preferential flow paths (natural fracture network) within lowpermeable clayey till at a field scale.
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Brennan, Fiona P., Vincent O'Flaherty, Gaelene Kramers, Jim Grant e Karl G. Richards. "Long-Term Persistence and Leaching of Escherichia coli in Temperate Maritime Soils". Applied and Environmental Microbiology 76, n. 5 (28 dicembre 2009): 1449–55. http://dx.doi.org/10.1128/aem.02335-09.

Testo completo
Abstract (sommario):
ABSTRACT Enteropathogen contamination of groundwater, including potable water sources, is a global concern. The spreading on land of animal slurries and manures, which can contain a broad range of pathogenic microorganisms, is considered a major contributor to this contamination. Some of the pathogenic microorganisms applied to soil have been observed to leach through the soil into groundwater, which poses a risk to public health. There is a critical need, therefore, for characterization of pathogen movement through the vadose zone for assessment of the risk to groundwater quality due to agricultural activities. A lysimeter experiment was performed to investigate the effect of soil type and condition on the fate and transport of potential bacterial pathogens, using Escherichia coli as a marker, in four Irish soils (n = 9). Cattle slurry (34 tonnes per ha) was spread on intact soil monoliths (depth, 1 m; diameter, 0.6 m) in the spring and summer. No effect of treatment or the initial soil moisture on the E. coli that leached from the soil was observed. Leaching of E. coli was observed predominantly from one soil type (average, 1.11 � 0.77 CFU ml−1), a poorly drained Luvic Stagnosol, under natural rainfall conditions, and preferential flow was an important transport mechanism. E. coli was found to have persisted in control soils for more than 9 years, indicating that autochthonous E. coli populations are capable of becoming naturalized in the low-temperature environments of temperate maritime soils and that they can move through soil. This may compromise the use of E. coli as an indicator of fecal pollution of waters in these regions.
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Groh, Jannis, Jan Vanderborght, Thomas Pütz, Hans-Jörg Vogel, Ralf Gründling, Holger Rupp, Mehdi Rahmati, Michael Sommer, Harry Vereecken e Horst H. Gerke. "Responses of soil water storage and crop water use efficiency to changing climatic conditions: a lysimeter-based space-for-time approach". Hydrology and Earth System Sciences 24, n. 3 (13 marzo 2020): 1211–25. http://dx.doi.org/10.5194/hess-24-1211-2020.

Testo completo
Abstract (sommario):
Abstract. Future crop production will be affected by climatic changes. In several regions, the projected changes in total rainfall and seasonal rainfall patterns will lead to lower soil water storage (SWS), which in turn affects crop water uptake, crop yield, water use efficiency (WUE), grain quality and groundwater recharge. Effects of climate change on those variables depend on the soil properties and were often estimated based on model simulations. The objective of this study was to investigate the response of key variables in four different soils and for two different climates in Germany with a different aridity index (AI): 1.09 for the wetter (range: 0.82 to 1.29) and 1.57 for the drier (range: 1.19 to 1.77) climate. This is done by using high-precision weighable lysimeters. According to a “space-for-time” (SFT) concept, intact soil monoliths that were moved to sites with contrasting climatic conditions have been monitored from April 2011 until December 2017. Evapotranspiration (ET) was lower for the same soil under the relatively drier climate, whereas crop yield was significantly higher, without affecting grain quality. Especially “non-productive” water losses (evapotranspiration out of the main growing period) were lower, which led to a more efficient crop water use in the drier climate. A characteristic decrease of the SWS for soils with a finer texture was observed after a longer drought period under a drier climate. The reduced SWS after the drought remained until the end of the observation period which demonstrates carry-over of drought from one growing season to another and the overall long-term effects of single drought events. In the relatively drier climate, water flow at the soil profile bottom showed a small net upward flux over the entire monitoring period as compared to downward fluxes (groundwater recharge) or drainage in the relatively wetter climate and larger recharge rates in the coarser- as compared to finer-textured soils. The large variability of recharge from year to year and the long-lasting effects of drought periods on the SWS imply that long-term monitoring of soil water balance components is necessary to obtain representative estimates. Results confirmed a more efficient crop water use under less-plant-available soil moisture conditions. Long-term effects of changing climatic conditions on the SWS and ecosystem productivity should be considered when trying to develop adaptation strategies in the agricultural sector.
Gli stili APA, Harvard, Vancouver, ISO e altri

Tesi sul tema "Intact monolith lysimeters"

1

Stark, Christine. "Effects of long- and short-term crop management on soil biological properties and nitrogen dynamics". Phd thesis, Lincoln University. Agriculture and Life Sciences Division, 2005. http://theses.lincoln.ac.nz/public/adt-NZLIU20070220.010748/.

Testo completo
Abstract (sommario):
To date, there has been little research into the role of microbial community structure in the functioning of the soil ecosystem and on the links between microbial biomass size, microbial activity and key soil processes that drive nutrient availability. The maintenance of structural and functional diversity of the soil microbial community is essential to ensure the sustainability of agricultural production systems. Soils of the same type with similar fertility that had been under long-term organic and conventional crop management in Canterbury, New Zealand, were selected to investigate relationships between microbial community composition, function and potential environmental impacts. The effects of different fertilisation strategies on soil biology and nitrogen (N) dynamics were investigated under field (farm site comparison), semi-controlled (lysimeter study) and controlled (incubation experiments) conditions by determining soil microbial biomass carbon (C) and N, enzyme activities (dehydrogenase, arginine deaminase, fluorescein diacetate hydrolysis), microbial community structure (denaturing gradient gel electrophoresis following PCR amplification of 16S and 18S rDNA fragments using selected primer sets) and N dynamics (mineralisation and leaching). The farm site comparison revealed distinct differences between the soils in microbial community structure, microbial biomass C (conventional > organic) and arginine deaminase activity (organic > conventional). In the lysimeter study, the soils were subjected to the same crop rotation (barley (Hordeum vulgare L.), maize (Zea mays L.), rape (Brassica napus L. ssp. oleifera (Moench)) plus a lupin green manure (Lupinus angustifolius L.) and two fertiliser regimes (following common organic and conventional practice). Soil biological properties, microbial community structure and mineral N leaching losses were determined over 2½ years. Differences in mineral leaching losses were not significant between treatments (total organic management: 24.2 kg N per ha; conventional management: 28.6 kg N per ha). Crop rotation and plant type had a larger influence on the microbial biomass, activity and community structure than fertilisation. Initial differences between soils decreased over time for most biological soil properties, while they persisted for the enzyme activities (e.g. dehydrogenase activity: 4.0 and 2.9 µg per g and h for organic and conventional management history, respectively). A lack of consistent positive links between enzyme activities and microbial biomass size indicated that similarly sized and structured microbial communities can express varying rates of activity. In two successive incubation experiments, the soils were amended with different rates of a lupin green manure (4 or 8t dry matter per ha), and different forms of N at 100 kg per ha (urea and lupin) and incubated for 3 months. Samples were taken periodically, and in addition to soil biological properties and community structure, gross N mineralisation was determined. The form of N had a strong effect on microbial soil properties. Organic amendment resulted in a 2 to 5-fold increase in microbial biomass and enzyme activities, while microbial community structure was influenced by the addition or lack of C or N substrate. Correlation analyses suggested treatment-related differences in nutrient availability, microbial structural diversity (species richness or evenness) and physiological properties of the microbial community. The findings of this thesis showed that using green manures and crop rotations improved soil biology in both production systems, that no relationships existed between microbial structure, enzyme activities and N mineralisation, and that enzyme activities and microbial community structure are more closely associated with inherent soil and environmental factors, which makes them less useful as early indicators of changes in soil quality.
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Stark, Christine H. "Effects of long- and short-term crop management on soil biological properties and nitrogen dynamics". Lincoln University, 2005. http://hdl.handle.net/10182/30.

Testo completo
Abstract (sommario):
To date, there has been little research into the role of microbial community structure in the functioning of the soil ecosystem and on the links between microbial biomass size, microbial activity and key soil processes that drive nutrient availability. The maintenance of structural and functional diversity of the soil microbial community is essential to ensure the sustainability of agricultural production systems. Soils of the same type with similar fertility that had been under long-term organic and conventional crop management in Canterbury, New Zealand, were selected to investigate relationships between microbial community composition, function and potential environmental impacts. The effects of different fertilisation strategies on soil biology and nitrogen (N) dynamics were investigated under field (farm site comparison), semi-controlled (lysimeter study) and controlled (incubation experiments) conditions by determining soil microbial biomass carbon (C) and N, enzyme activities (dehydrogenase, arginine deaminase, fluorescein diacetate hydrolysis), microbial community structure (denaturing gradient gel electrophoresis following PCR amplification of 16S and 18S rDNA fragments using selected primer sets) and N dynamics (mineralisation and leaching). The farm site comparison revealed distinct differences between the soils in microbial community structure, microbial biomass C (conventional>organic) and arginine deaminase activity (organic>conventional). In the lysimeter study, the soils were subjected to the same crop rotation (barley (Hordeum vulgare L.), maize (Zea mais L.), rape (Brassica napus L. ssp. oleifera (Moench)) plus a lupin green manure (Lupinus angustifolius L.) and two fertiliser regimes (following common organic and conventional practice). Soil biological properties, microbial community structure and mineral N leaching losses were determined over 2½ years. Differences in mineral leaching losses were not significant between treatments (total organic management: 24.2 kg N ha⁻¹; conventional management: 28.6 kg N ha⁻¹). Crop rotation and plant type had a larger influence on the microbial biomass, activity and community structure than fertilisation. Initial differences between soils decreased over time for most biological soil properties, while they persisted for the enzyme activities (e.g. dehydrogenase activity: 4.0 and 2.9 µg g⁻¹ h⁻¹ for organic and conventional management history, respectively). A lack of consistent positive links between enzyme activities and microbial biomass size indicated that similarly sized and structured microbial communities can express varying rates of activity. In two successive incubation experiments, the soils were amended with different rates of a lupin green manure (4 or 8t dry matter ha⁻¹), and different forms of N at 100 kg ha⁻¹ (urea and lupin) and incubated for 3 months. Samples were taken periodically, and in addition to soil biological properties and community structure, gross N mineralisation was determined. The form of N had a strong effect on microbial soil properties. Organic amendment resulted in a 2 to 5-fold increase in microbial biomass and enzyme activities, while microbial community structure was influenced by the addition or lack of C or N substrate. Correlation analyses suggested treatment-related differences in nutrient availability, microbial structural diversity (species richness or evenness) and physiological properties of the microbial community. The findings of this thesis showed that using green manures and crop rotations improved soil biology in both production systems, that no relationships existed between microbial structure, enzyme activities and N mineralisation, and that enzyme activities and microbial community structure are more closely associated with inherent soil and environmental factors, which makes them less useful as early indicators of changes in soil quality.
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia