Letteratura scientifica selezionata sul tema "Insulin-like growth factor I Physiology"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Insulin-like growth factor I Physiology".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Articoli di riviste sul tema "Insulin-like growth factor I Physiology"

1

Holly, Jeff M. P., e Claire M. Perks. "Insulin-Like Growth Factor Physiology". Endocrinology and Metabolism Clinics of North America 41, n. 2 (giugno 2012): 249–63. http://dx.doi.org/10.1016/j.ecl.2012.04.009.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Yakar, Shoshana, e Martin L. Adamo. "Insulin-Like Growth Factor 1 Physiology". Endocrinology and Metabolism Clinics of North America 41, n. 2 (giugno 2012): 231–47. http://dx.doi.org/10.1016/j.ecl.2012.04.008.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Rosen, Clifford J. "Serum Insulin-like Growth Factors and Insulin-like Growth Factor-binding Proteins: Clinical Implications". Clinical Chemistry 45, n. 8 (1 agosto 1999): 1384–90. http://dx.doi.org/10.1093/clinchem/45.8.1384.

Testo completo
Abstract (sommario):
Abstract The last decade has been characterized by a major investigative thrust into the physiology of two unique but ubiquitous peptides, insulin-like growth factor (IGF)-I and IGF-II. The regulatory systems that control the tissue bioactivity of the IGFs have been delineated, and subcellular signaling mechanisms have been clarified. Clearly, both tissue and circulating growth factor concentrations are important in defining the relationship between IGF-I and cell activity. Bone, liver, and circulatory IGF-I have received the most attention by investigators, in part because of the ease of measurement and the interaction with disease states such as osteoporosis. More recently, attention has focused on the role IGF-I plays in neoplastic transformation and growth. Two large prospective observational studies have demonstrated greater risk for prostate and breast cancer associated with high circulating concentrations of IGF-I. Animal models and in vitro studies confirm that there is a close, albeit complex, interaction between IGF-I signaling and bone turnover. This report will focus on: (a) IGF physiology, including IGF ligands, binding proteins, and proteases; (b) the relationship between IGF-I and bone mass in respect to risk for osteoporosis; (c) the heritable regulation of the IGF-I phenotype; and (d) the association between serum IGF-I and cancer risk. The IGFs remain a major area for basic and clinical investigations; future studies may define both diagnostic and therapeutic roles for these peptides or their related proteins in several disease states.
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Pollak, Michael. "Insulin-like growth factor physiology and neoplasia". Growth Hormone & IGF Research 10 (gennaio 2000): S6—S7. http://dx.doi.org/10.1016/s1096-6374(00)90002-9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Holly, Jeff M. P., Claire M. Perks e Claire E. H. Stewart. "Overview of insulin-like growth factor physiology". Growth Hormone & IGF Research 10 (gennaio 2000): S8—S9. http://dx.doi.org/10.1016/s1096-6374(00)90003-0.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Roith, Derek Le. "The Insulin-Like Growth Factor System". Experimental Diabesity Research 4, n. 4 (2003): 205–12. http://dx.doi.org/10.1155/edr.2003.205.

Testo completo
Abstract (sommario):
The insulin-like growth factor (IGF) system in ubiquitous and plays a role in every tissue of the body. It is comprised of ligands, receptors and binding proteins, each with specific functions. While it plays an essential role in embryonic and post-natal development, the IGF system is also important in normal adult physiology. There are now numerous examples of diseases such as diabetes, cancer, and malnutrition in which the IGF system is a major player and, not surprisingly, there are attempts to affect these disorders by manipulating the system.
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Pollak, M. "Insulin-like growth factor physiology and cancer risk". European Journal of Cancer 36, n. 10 (giugno 2000): 1224–28. http://dx.doi.org/10.1016/s0959-8049(00)00102-7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Gabbitas, Bari, e Ernesto Canalis. "Insulin-like growth factors sustain insulin-like growth factor-binding protein-5 expression in osteoblasts". American Journal of Physiology-Endocrinology and Metabolism 275, n. 2 (1 agosto 1998): E222—E228. http://dx.doi.org/10.1152/ajpendo.1998.275.2.e222.

Testo completo
Abstract (sommario):
Insulin-like growth factors (IGFs) I and II are considered to be autocrine regulators of bone cell function. Recently, we demonstrated that IGF-I induces IGF-binding protein-5 (IGFBP-5) expression in cultures of osteoblast-enriched cells from 22-day fetal rat calvariae (Ob cells). In the present study, we postulated that IGFs play an autocrine role in the maintenance of IGFBP-5 basal expression in Ob cells. IGFBP-2 and -3, at concentrations that bind endogenous IGFs, decreased IGFBP-5 mRNA levels, as determined by Northern blot analysis, and protein levels, as determined by Western immunoblots of extracellular matrix extracts of Ob cells. IGFBP-2 and -3 in excess inhibited IGFBP-5 heterogeneous nuclear RNA levels, as determined by RT-PCR, and did not alter the half-life of IGFBP-5 mRNA in transcriptionally arrested Ob cells. In conclusion, blocking endogenous IGFs in Ob cells represses IGFBP-5 expression, suggesting that IGFs are autocrine inducers of IGFBP-5 synthesis in osteoblasts.
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Sheppard, M. S., e R. M. Bala. "Insulin-like growth factor inhibition of growth hormone secretion". Canadian Journal of Physiology and Pharmacology 64, n. 5 (1 maggio 1986): 525–30. http://dx.doi.org/10.1139/y86-087.

Testo completo
Abstract (sommario):
Somatomedins – insulin-like growth factors (SM/IGF) are growth hormone (GH) dependent serum growth factors. There is some evidence that IGF inhibit GH release (negative feedback) in 3- to 24-h incubations of cultured rat adenohypophysial cells. We have used acutely dispersed noncultured rat adenohypophysial cells to study the dynamics of IGF on GH secretion. In this system both IGF-I and IGF-II (100 ng/mL) slightly, but significantly, decrease the cumulative GH released by human pancreas growth hormone releasing factor 1–40 (GRF) and the phosphodiesterase inhibitor 3-isobutyl-1-methyl xanthine. The inhibition is small (16%) and usually not statistically significant until 2 h of incubation. The inhibition with IGF is additive to that produced with low concentrations of somatostatin. The IGF also sigificantly decrease the rate of GH release in all time periods tested (0–1, 1–2, 2–3 h). In addition, the IGF decrease the quantity of [14C]leucine protein eluted at the position of labelled rat GH on Sephadex G75, which would include newly synthesized GH extracted from the cells. Thus we conclude that the decreased GH released may be due to an effect of IGF on both rate of release and on GH synthesis.
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Sowers, James R. "Insulin and Insulin-Like Growth Factor in Normal and Pathological Cardiovascular Physiology". Hypertension 29, n. 3 (marzo 1997): 691–99. http://dx.doi.org/10.1161/01.hyp.29.3.691.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Tesi sul tema "Insulin-like growth factor I Physiology"

1

Burns, Jason Lee. "Growth control by insulin-like growth factor II". Thesis, University of Oxford, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270285.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Robertson, James Gray. "Insulin-like growth factors and insulin-like growth factor binding proteins in wounds /". Title page, contents and abstract only, 1999. http://web4.library.adelaide.edu.au/theses/09PH/09phr6509.pdf.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Levitt, Randy J. "Aspects of insulin-like growth factor physiology in cancer". Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=111826.

Testo completo
Abstract (sommario):
The insulin-like growth factor (IGF) pathway consists of two ligands (IGF-I and IGF-II), two receptors (IGF-IR and IGF-IIR) and six IGF binding proteins (IGFBP-I through -6). There is considerable evidence from both laboratory and population studies that IGF physiology is relevant to neoplastic growth. For example, it has been shown that IGF-I and/or IGF-II act as mitogens and anti-apoptotic agents for both normal and malignant cells by binding to the IGF-IR and activating downstream signalling pathways. Consistent with this data, IGF-IR inhibition by a variety of strategies inhibits cancer cell proliferation and/or induces apoptosis both in vitro and in animal models of neoplasia. Furthermore, epidemiological studies have demonstrated a positive correlation between serum IGF-I levels and risk of subsequent cancer. Classically, the IGFBPs were considered to be growth inhibitors, as they had a well-defined role in sequestering the mitogens IGF-I and IGF-II, therefore preventing binding and subsequent activation of mitogenic and anti-apoptotic pathways downstream of the IGF-IR. However, increasing evidence indicates that under certain conditions, IGFBPs can act as growth stimulators, and both IGF-dependent and -independent mechanisms have been proposed.
Although the roles of the IGFs, IGF-IR and IGFBPs in cancer have been studied extensively, this thesis describes several new links between IGF physiology and neoplasia. In the first section, we demonstrate that IGF-I can attenuate growth inhibition and apoptosis induced by a class of drugs called COX-2 inhibitors in BxPC-3 pancreatic cancer cells. This effect could be attributed to opposite influences of IGF-IR signalling and COX-2 inhibitors on activation of Akt, with IGF-IR signalling increasing activity and COX-2 inhibitors decreasing activity. In the second section, we demonstrate that in 184htert cells, an immortal but untransformed breast epithelial cell line, COX-2 inhibitors can induce IGFBP-3 expression. We go on to show that IGFBP-3 can inhibit growth of this cell line in an IGF-dependent manner, and speculate that this action of COX-2 inhibitors may be relevant to data linking use of this class of drugs to decreased breast cancer risk. In the third section, we demonstrate that the expression of IGFBP-2 in U251 glioma cells is inhibited by the induction of the tumor suppressor PTEN. Furthermore, IGFBP-2 does not effect the growth of this cell line, indicating that published associations between tumor IGFBP-2 expression and grade of glioma may be a result of IGFBP-2 acting as a marker for loss of function of PTEN. In the fourth and final section, we demonstrate that in MDA-MB-231 breast cancer cells, over-expression of IGFBP-2 can enhance growth, indicating that the effect of IGFBP-2 on growth of neoplastic cells is tissue specific. Furthermore, antisense strategies targeting IGFBP-2 mRNA (antisense oligonucleotides and siRNA) can inhibit growth of IGFBP-2-expressing breast cancer cells both in vitro and in vivo.
Taken together, these results extend the existing body of evidence demonstrating that IGF physiology contributes to neoplastic growth, and suggest that strategies to inhibit IGF-IR signalling and/or IGFBP-2 expression may have therapeutic value for some types of cancers.
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Bibollet-Bahena, Olivia. "The insulin-like growth factor-1 stimulates protein synthesis in oligodendrocyte progenitors /". Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=112382.

Testo completo
Abstract (sommario):
Insulin-like growth factor-1 (IGF-1) is essential for oligodendrocyte (OL) development, promoting their survival, proliferation and differentiation. Furthermore, IGF-1 null mutant mice have a decrease in CNS myelination and in the number of OL progenitors (OLPs). IGF-1 interacts with the Type I IGF receptor to activate two main downstream signalling pathways, the PI3K/Akt and the Ras-Raf-MEK/ERK cascades, which mediate survival or proliferation of OLPs. The objective of this study is to elucidate the transduction pathways involved in IGF-I-stimulated protein synthesis, important for growth and differentiation of OLs. In other cellular systems, the PI3K/Akt pathway is involved in protein translation. mTOR and the p70 S6 kinase are downstream effectors that phosphorylate translation initiation factors (e.g. eIF-4E) and their regulators (e.g. 4E-BP1). OLPs were obtained from primary cultures and were treated with IGF-1 with or without inhibitors LY294002 or wortmannin (PI3K), rapamycin (mTOR), Akt III or IV, an adenovirus with a dominant negative form of Akt or PD98059 (ERK). Protein synthesis was assessed by metabolic labeling with [35S]-methionine, and protein phosphorylation by Western blotting. Results from the former showed that IGF-1 stimulates protein synthesis in a dose-dependent manner. Moreover, IGF-1 increases protein synthesis in OLPs through PI3K, mTOR, Akt and ERK activation. Concordantly, Western blot analysis reveals that IGF-1 stimulates phosphorylation of Akt, mTOR, ERK, S6 and 4E-BP 1. Activation of S6 and inactivation of 4E-BP1 occur through phosphorylation and are required for protein synthesis to take place. These events are dependent on the upstream activation of PI3K, Akt and mTOR.
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Robertson, Katherine. "The role of the growth hormone/IGF-I system on islet cell growth and insulin action /". Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=103288.

Testo completo
Abstract (sommario):
The study of diabetes mellitus is vital in this day and age because its incidence is increasing at an alarming rate. Diabetes results in the loss of function of beta-cells within the pancreas. Insulin resistance contributes to diabetes but the human body can compensate in various ways such as increasing the islet cell mass, glucose disposal and insulin secretion, in order to prevent the onset of diabetes. Growth hormone (GH) and insulin-like growth factor-I (IGF-I) are two integral hormones important in both glucose homeostasis and islet cell growth. Early studies using cultured islet cells have demonstrated positive regulation of beta-cell growth by both GH and IGF-I. To evaluate their relevance on normal beta-cell growth, compensatory growth, as well as in insulin responsiveness, we have used two mouse models that represent opposite manipulations of the GH/IGF-I axis. Specifically, the growth hormone receptor gene deficient (GHR-/-) and the IGF-I overexpression (MT-IGF) mice, to help understand the role of glucose homeostasis and islet cell growth in the GH/IGF-I axis. GH is essential for somatic growth and development as well as maintaining metabolic homeostasis. It is known that GH stimulates normal islet cell growth. Moreover, GH may also participate in islet cell overgrowth and compensate for insulin resistance induced by obesity. To determine whether the islet cell overgrowth is dependent on GH signaling, we studied the response of GHR-/- mice to high-fat diet (HFD)-induced obesity. We also studied the insulin responsiveness in GHR-/- mice. On the other hand, IGF-I promotes embryonic development, postnatal growth and the maturation of various organ systems. The notion that IGF-I stimulates islet cell growth has been challenged in recent years by results from IGF-I and receptor gene targeted models. We have characterized MT-IGF mice which overexpress the IGF-I gene.
The results of our studies indicate that (1) GH is essential for normal islet cell growth, but not required for compensatory overgrowth of the islets in response to obesity, (2) GHR gene deficiency caused delayed insulin responsiveness in skeletal muscle; in contrast to elevated insulin sensitivity in the liver; (3) although overexpression does not stimulate islet cell growth, a chronic IGF-I elevation caused significant hypoglycemia, hypoinsulinemia, and improved glucose tolerance, (4) finally IGF-I overexpression mice are resistant to experimental diabetes.
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Kallincos, Nicholas Campbell. "Growth hormone (GH) and insulin-like growth factor-I (IGF-I) in vivo: investigation via transgenesis in rats". Thesis, Adelaide, 1993. http://hdl.handle.net/2440/21602.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Kallincos, Nicholas Campbell. "Growth hormone (GH) and insulin-like growth factor-I (IGF-I) in vivo: investigation via transgenesis in rats /". Adelaide : Thesis (Ph.D.) -- University of Adelaide, Department of Biochemistry, 1993. http://web4.library.adelaide.edu.au/theses/09PH/09phk143.pdf.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Lu, Yarong 1971. "Pancreatic-specific insulin-like growth factor I gene deficiency on islet cell growth and protection". Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=111827.

Testo completo
Abstract (sommario):
The role of insulin-like growth factor I (IGF-I) in pancreatic islet cell growth and development has been debated in recent years. The dogma that IGF-I stimulates pancreatic islet growth has been challenged by combinational targeting of IGF or IGF-IR genes, as well as beta-cell-specific IGF-IR gene deficiency. In order to assess the physiological role of locally produced IGF-I, we have developed pancreatic-specific IGF-I gene deficiency (PID) by crossing Pdx1-Cre and IGF-I/loxP mice. PID mice were normal except for decreased blood glucose level and a 2.3-fold enlarged islet cell mass. When challenged with low doses of streptozotocin, control mice developed hyperglycemia after 6 days that was maintained at high levels for at least 2 months. In contrast, PID mice only exhibited marginal hyperglycemia after 12 days, maintained throughout the experiment. Furthermore, streptozotocin-induced beta-cell apoptosis (TUNEL assay) was significantly prevented in PID mice. PID mice also exhibited a delayed onset of type 2 diabetes induced by a high-fat diet, accompanied by super enlarged pancreatic islets and preserved sensitivity to insulin. As the phenotype is unlikely a direct consequence of IGF-I deficiency, we used oligonucleotide DNA microarray to explore possible activation of pro-islet genes in PID mice, which revealed upregulation of multiple new members of the Reg family genes (Reg2, 3alpha and 3beta) in the pancreas. The results were subsequently confirmed by Northern blot and/or realtime PCR, which exhibited 2 to 8 fold increases in the level of their mRNAs. Moreover, these Reg family genes were also activated following streptozotocin-induced beta-cell damage and diabetes. Our results reveal a possible mechanism of islet growth and protection in PID mice, thus serving a potential strategy in combating diabetes.
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Lok, Fong. "Role of IGF-I in ovine fetal and placental growth and development /". Title page, contents and abstract only, 1998. http://web4.library.adelaide.edu.au/theses/09PH/09phl836.pdf.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Kind, Karen Lee. "Insulin-like growth factors and growth of the fetal sheep /". Title page, contents and abstract only, 1995. http://web4.library.adelaide.edu.au/theses/09PH/09phk525.pdf.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Libri sul tema "Insulin-like growth factor I Physiology"

1

1945-, LeRoith Derek, a cura di. Insulin-like growth factors: Molecular and cellular aspects. Boca Raton: CRC Press, 1991.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Jr, Roberts Charles T., e Rosenfeld Ron G, a cura di. The IGF system: Molecular biology, physiology, and clinical applications. Totowa, N.J: Humana Press, 1999.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

International Symposium on Molecular and Cellular Biology of Insulin and IGFs (3rd 1990 Gainesville, Fla.). Molecular biology and physiology of insulin and insulin-like growth factors. New York: Plenum Press, 1991.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

1945-, LeRoith Derek, Raizada Mohan K e International Symposium on Insulin, IGFs, and their Receptors (4th : 1993 : Woods Hole, Mass.), a cura di. Current directions in insulin-like growth factor research. New York: Plenum, 1993.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Raizada, Mohan K., e Derek LeRoith, a cura di. Molecular Biology and Physiology of Insulin and Insulin-Like Growth Factors. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-5949-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Raizada, Mohan K. Molecular Biology and Physiology of Insulin and Insulin-Like Growth Factors. Boston, MA: Springer US, 1991.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Robert, Hooghe, a cura di. Growth hormone, prolactin, and IGF-1 as lymphohemopoietic cytokines. New York: Springer-Verlag, 1995.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Hooghe-Peters, Elisabeth L. Growth hormone, prolactin, and IGF-1 as lymphohemopoietic cytokines. Austin: R.G. Landes, 1995.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

International Symposium on Insulin-Like Growth Factors/Somatomedins (2nd 1991 San Francisco, Calif.). Modern concepts of insulin-like growth factors: Proceedings of the Second International Symposium on Insulin-Like Growth Factors/Somatomedins held January 12-16, 1991 in San Francisco, California. New York: Elsevier, 1991.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

C, Baxter R., Gluckman Peter D e Rosenfeld Ron G, a cura di. The insulin-like growth factors and their regulatory proteins: Proceedings of the Third International Symposium on Insulin-Like Growth Factors, Sydney, 6-10 February 1994. Amsterdam: Excerpta Medica, 1994.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Capitoli di libri sul tema "Insulin-like growth factor I Physiology"

1

Aguirre, Gabriel A., José Luis González-Guerra, Luis Espinosa e Inma Castilla-Cortazar. "Insulin-Like Growth Factor 1 in the Cardiovascular System". In Reviews of Physiology, Biochemistry and Pharmacology, Vol. 175, 1–45. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/112_2017_8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Adashi, Eli Y., Carol Resnick, Eleuterio R. Hernandez, Marjorie E. Svoboda, E. Hoyt, David R. Clemmons, Pauline K. Lund e Judson J. Van Wyk. "Rodent Studies on the Potential Relevance of Insulin-Like Growth Factor (IGF-I) to Ovarian Physiology". In Growth Factors and the Ovary, 95–105. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-5688-2_7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Frohman, Lawrence A. "Physiology of the Growth Hormone Releasing Hormone-Somatostatin-Growth Hormone-Insulin-Like Growth Factor I Axis". In GHRH, GH, and IGF-I, 3–10. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-0807-5_1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Martín-Estal, I., R. G. de la Garza e I. Castilla-Cortázar. "Intrauterine Growth Retardation (IUGR) as a Novel Condition of Insulin-Like Growth Factor-1 (IGF-1) Deficiency". In Reviews of Physiology, Biochemistry and Pharmacology, 1–35. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/112_2015_5001.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Froesch, E. R. "Insulin-like Growth Factor: Endocrine and Autocrine/Paracrine Implications and Relations to Diabetes Mellitus". In Contributions of Physiology to the Understanding of Diabetes, 127–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60475-1_9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Martín-Estal, I., R. G. de la Garza e I. Castilla-Cortázar. "Erratum to: Intrauterine Growth Retardation (IUGR) as a Novel Condition of Insulin-Like Growth Factor-1 (IGF-1) Deficiency". In Reviews of Physiology, Biochemistry and Pharmacology, 129. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/112_2016_1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Moolenaar, W. H., K. Jalink e E. J. van Corven. "Lysophosphatidic acid: A bioactive phospholipid with growth factor-like properties". In Reviews of Physiology, Biochemistry and Pharmacology, 47–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/3540551921_3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Jacobs, S. "Insulin-like Growth Factor I Receptors". In Insulin, 267–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-74098-5_13.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Seth, John. "Insulin-Like Growth Factor-I". In The Immunoassay Kit Directory, 197–203. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1414-1_29.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Seth, John. "Insulin-Like Growth Factor-II". In The Immunoassay Kit Directory, 204–5. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1414-1_30.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Atti di convegni sul tema "Insulin-like growth factor I Physiology"

1

Wijayanti, Dian, Sunarjati Sudigdo Adi, Achadiyani, Gaga Irawan Nugraha, Reni Farenia e Adi Santosa Maliki. "The Effect of Intermitten Fasting Vs Low Calorie Diet to Insuline Like Growth Factor-1 (IGF-1) Concentration, Fat Mass and Lean Mass of Rattus Norvegicus Obesity Model". In Surabaya International Physiology Seminar. SCITEPRESS - Science and Technology Publications, 2017. http://dx.doi.org/10.5220/0007332600530055.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Yerushalmi, R., B. Gilks, T. Nielsen, S. Leang, M. Cheang, R. Woods, K. Gelmon e H. Kennecke. "Insulin like growth factor in breast cancer subtypes." In CTRC-AACR San Antonio Breast Cancer Symposium: 2008 Abstracts. American Association for Cancer Research, 2009. http://dx.doi.org/10.1158/0008-5472.sabcs-3048.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Doyle, Suzanne L., Claire Donohoe, Joanne Lysaght, Fiona Lithander, Graham Pidgeon e John V. Reynolds. "Abstract 2283: The role of insulin-like growth factor-1 and insulin like growth factor-1 receptor in obesity and oesophageal cancer". In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-2283.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Rice, Megan S., Rulla M. Tamimi, James L. Connolly, Laura C. Collins, Dejun Shen, Michael N. Pollak, Bernard Rosner, Susan E. Hankinson e Shelley S. Tworoger. "Abstract A68: Insulin-like growth factor-1, insulin-like growth factor binding protein-3, and lobule type in the Nurses' Health Study II". In Abstracts: AACR International Conference on Frontiers in Cancer Prevention Research‐‐ Oct 22-25, 2011; Boston, MA. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1940-6207.prev-11-a68.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Nedelkov, Dobrin, Eric Niederkofler, David Phillips, Bryan Krastins, Urban Kiernan, Kemmons Tubbs e Mary Lopez. "Abstract 2508: Mass spectrometric immunoassay for insulin-like growth factor 1." In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-2508.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Warnken, M., U. Reitzenstein, M. Fuhrmann, P. Mayer, H. Enzmann e K. Racke. "Characterization of Proliferative Effects of Insulin and Insulin-Like Growth Factor in Human Airway Epithelial Cells." In American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a4982.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Yee, Douglas, Dedra H. Fagan, Xihong Zhang, Annabell S. Oh, Kelly LaPara, Marc Becker, Deepali Sachdev e Hua Zhang. "Abstract CN07-02: Disrupting insulin‐like growth factor signaling with monoclonal antibodies". In Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics--Nov 15-19, 2009; Boston, MA. American Association for Cancer Research, 2009. http://dx.doi.org/10.1158/1535-7163.targ-09-cn07-02.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Fritton, J. Christopher, Yuki Kawashima, Hui Sun, Yingjie Wu, Wilson Mejia, Hayden W. Courtland, Clifford J. Rosen e Shoshana Yakar. "Bone Marrow Adipogenesis Is Affected by Insulin-Like Growth Factor-1 Complexes". In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206158.

Testo completo
Abstract (sommario):
Fat tissue, which is composed of lipid-filled adipocytes that accumulate during aging, displaces mineralized tissue and reduces the mechanical integrity bone. Bone marrow adipocytes provide stroma for maintenance of mesencymal stem cells (MSC) and reside at sites of bone turnover (i.e., endosteal surfaces where osteoblasts form new bone), potentially influencing cell activity via a paracrine route.
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Bruns, Alexander-Francisco, Jessica Smith, Pooja Shah, Nadira Yuldasheva, Mark T. Kearney e Stephen Wheatcroft. "145 Insulin-like growth factor binding protein 2 (igfbp2) positively regulates angiogenesis". In British Cardiovascular Society Annual Conference ‘High Performing Teams’, 4–6 June 2018, Manchester, UK. BMJ Publishing Group Ltd and British Cardiovascular Society, 2018. http://dx.doi.org/10.1136/heartjnl-2018-bcs.141.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Ibrahim, YH, J. Hartel, K. La Parra e D. Yee. "Insulin-like growth factor binding protein-1 (IGFBP-1) targets both the insulin-like growth factor (IGF) and integrin pathways for the inhibition of breast cancer cell motility." In CTRC-AACR San Antonio Breast Cancer Symposium: 2008 Abstracts. American Association for Cancer Research, 2009. http://dx.doi.org/10.1158/0008-5472.sabcs-402.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Rapporti di organizzazioni sul tema "Insulin-like growth factor I Physiology"

1

Gross, Jennifer M. Insulin-Like Growth Factor Binding Protein-1 Interacts with Integrins to Inhibit Insulin-Like Growth Factor-Induced Breast Cancer Growth and Migration. Fort Belvoir, VA: Defense Technical Information Center, luglio 2003. http://dx.doi.org/10.21236/ada420347.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Cleveland, Rebecca J., Marilie D. Gammon e Ralph S. Baric. Insulin-Like Growth Factor I Polymorphisms in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, settembre 2002. http://dx.doi.org/10.21236/ada412654.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Morrison, Tiffany. The Regulation of Insulin-like Growth Factor 1 by Growth Hormone via Stat5b. Portland State University Library, gennaio 2012. http://dx.doi.org/10.15760/honors.14.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Harbeson, Caroline E., e Steven A. Rosenzweig. The Role of Insulin-Like Growth Factor (IGF) in IGF-Mediated Tumorigenesis. Fort Belvoir, VA: Defense Technical Information Center, luglio 2004. http://dx.doi.org/10.21236/ada432027.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Jarrard, David F. Relaxation of Insulin-Like Growth Factor II Imprinting in Prostate Cancer Development. Fort Belvoir, VA: Defense Technical Information Center, gennaio 2005. http://dx.doi.org/10.21236/ada433881.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Jarrard, David F. Relaxation of Insulin-Like Growth Factor II Imprinting in Prostate Cancer Development. Fort Belvoir, VA: Defense Technical Information Center, gennaio 2003. http://dx.doi.org/10.21236/ada414797.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Jarrard, David F. Relaxation of Insulin-Like Growth Factor II Imprinting in Prostate Cancer Development. Fort Belvoir, VA: Defense Technical Information Center, gennaio 2004. http://dx.doi.org/10.21236/ada423078.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Doughterty, Michele K. Insulin Like Growth Factor I Receptor Function in Estrogen Receptor Negative Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, luglio 2001. http://dx.doi.org/10.21236/ada396720.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Bartucci, Monica, e Ewa Surmacz. Cell-Cell Adhesion and Insulin-Like Growth Factor I Receptor in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, settembre 2001. http://dx.doi.org/10.21236/ada398204.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Dougherty, Michele K. Insulin Like Growth Factor 1 Receptor Function in Estrogen Receptor Negative Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, luglio 2002. http://dx.doi.org/10.21236/ada408990.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia