Letteratura scientifica selezionata sul tema "InGaAs photodiodes"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "InGaAs photodiodes".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "InGaAs photodiodes"
Maleev N.A., Kuzmenkov A.G., Kulagina M.M., Vasyl’ev A. P., Blokhin S. A., Troshkov S.I., Nashchekin A.V. et al. "Mushroom mesa structure for InAlAs-InGaAs avalanche photodiodes". Technical Physics Letters 48, n. 14 (2022): 28. http://dx.doi.org/10.21883/tpl.2022.14.52106.18939.
Testo completoBAPTISTA, B. J., e S. L. MUFSON. "RADIATION HARDNESS STUDIES OF InGaAs AND Si PHOTODIODES AT 30, 52, & 98 MeV AND FLUENCES TO 5 × 1011 PROTONS/CM2". Journal of Astronomical Instrumentation 02, n. 01 (settembre 2013): 1250008. http://dx.doi.org/10.1142/s2251171712500080.
Testo completoZhuravlev, K. S., A. L. Chizh, K. B. Mikitchuk, A. M. Gilinsky, I. B. Chistokhin, N. A. Valisheva, D. V. Dmitriev, A. I. Toropov e M. S. Aksenov. "High-power InAlAs/InGaAs Schottky barrier photodiodes for analog microwave signal transmission". Journal of Semiconductors 43, n. 1 (1 gennaio 2022): 012302. http://dx.doi.org/10.1088/1674-4926/43/1/012302.
Testo completoSun, H., X. Huang, C. P. Chao, S. W. Chen, B. Deng, D. Gong, S. Hou et al. "QTIA, a 2.5 or 10 Gbps 4-channel array optical receiver ASIC in a 65 nm CMOS technology". Journal of Instrumentation 17, n. 05 (1 maggio 2022): C05017. http://dx.doi.org/10.1088/1748-0221/17/05/c05017.
Testo completoCampbell, J. C., B. C. Johnson, G. J. Qua e W. T. Tsang. "Frequency response of InP/InGaAsP/InGaAs avalanche photodiodes". Journal of Lightwave Technology 7, n. 5 (maggio 1989): 778–84. http://dx.doi.org/10.1109/50.19113.
Testo completoMartinelli, Ramon U., Thomas J. Zamerowski e Paul A. Longeway. "2.6 μm InGaAs photodiodes". Applied Physics Letters 53, n. 11 (12 settembre 1988): 989–91. http://dx.doi.org/10.1063/1.100050.
Testo completoYoon, H. W., J. J. Butler, T. C. Larason e G. P. Eppeldauer. "Linearity of InGaAs photodiodes". Metrologia 40, n. 1 (febbraio 2003): S154—S158. http://dx.doi.org/10.1088/0026-1394/40/1/335.
Testo completoZhukov A. E., Kryzhanovskaya N. V., Makhov I. S., Moiseev E. I., Nadtochiy A. M., Fominykh N. A., Mintairov S. A., Kalyuzhyy N. A., Zubov F. I. e Maximov M. V. "Model for speed performance of quantum-dot waveguide photodiode". Semiconductors 57, n. 3 (2023): 211. http://dx.doi.org/10.21883/sc.2023.03.56238.4783.
Testo completoWon-Tien Tsang, J. C. Campbell e G. J. Qua. "InP/InGaAsP/InGaAs avalanche photodiodes grown by chemical beam epitaxy". IEEE Electron Device Letters 8, n. 7 (luglio 1987): 294–96. http://dx.doi.org/10.1109/edl.1987.26636.
Testo completoCampbell, J. C., S. Chandrasekhar, W. T. Tsang, G. J. Qua e B. C. Johnson. "Multiplication noise of wide-bandwidth InP/InGaAsP/InGaAs avalanche photodiodes". Journal of Lightwave Technology 7, n. 3 (marzo 1989): 473–78. http://dx.doi.org/10.1109/50.16883.
Testo completoTesi sul tema "InGaAs photodiodes"
Xie, Shiyu. "Design and characterisation of InGaAs high speed photodiodes, InGaAs/InAlAs avalanche photodiodes and novel AlAsSb based avalanche photodiodes". Thesis, University of Sheffield, 2012. http://etheses.whiterose.ac.uk/2267/.
Testo completoXie, Jingjing. "Characterisation of low noise InGaAs/AlAsSb avalanche photodiodes". Thesis, University of Sheffield, 2013. http://etheses.whiterose.ac.uk/4511/.
Testo completoFaure, Benoit. "MODELISATION ET OPTIMISATION DES PHOTODIODES A AVALANCHE ET HETEROJONCTION InP/InGaAs". Toulouse, INSA, 1986. http://www.theses.fr/1986ISAT0003.
Testo completoTabor, Steven Alan. "Spectral and Spatial Quantum Efficiency of AlGaAs/GaAs and InGaAs/InP PIN Photodiodes". PDXScholar, 1991. https://pdxscholar.library.pdx.edu/open_access_etds/4760.
Testo completoDentan, Martin. "Photodiode PIN InGaAs en grands signaux hyperfréquence : modélisation, réalisation et caractérisation". Paris 11, 1989. http://www.theses.fr/1989PA112257.
Testo completoThe devices coupled to optical fibers in optical links are the laser diode (light emitter) and the P. I. N. Photodiode (light receptor). This thesis concerns the optimization of the photodiode performances, in terms of bandwidth and linearity, in large signal microwave operation. One of the goals is the improvement of the frequency response of this device. Using a small signal modal, we show that we can increase the bandwidth of photodiodes by reducing the active region dimensions. Another important objective is to obtain large signal operation. The absorption of an intense optical signal, by a diode with a very small active region, leads to a non-linear electrical response due to the effects of space-charge. A modal taking into account the equations for the carrier transport in the space-charge region is developed; in particular, it gives the harmonies of the device response. Ln this thesis, we have realized and discuss all the steps necessary for the fabrication of the optical receiver: epitaxy of the material, process of the device and packaging allowing microwave operations. Then the two models described above were experimentally verified by D. C. And microwave electrical characterization. We demonstrate an 18 GHz bandwidth for our photodiode and show in particular that this photodiode has a more linear response than the lasers with direct modulation used in experimental optical links at L. C. R. , for an input electrical power of 0 dBm
An, Serguei. "Material and device characterization of InP/InGaAs avalanche photodiodes for multigigabit optical fiber communications". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0008/NQ61622.pdf.
Testo completoLe, Goff Florian. "Intégration de matériaux semi-conducteurs III-V dans des filières de fabrication silicium avancées pour imagerie proche infrarouge". Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAD034/document.
Testo completoNowadays short wavelength infrared (SWIR) imaging based on InP/InGaAs photo-diodes is quite popular for uncooled camera. The state of the art technology is a double layer planar heterointerface focal plane array. But, it remains expensive. Its cost comes essentially from the individually hybridization of photo-diodes array with read-out circuit, by the mean of an indium-bumps flip-chip process. We suggest an alternative method for hybridization, in order to lowering the cost and providing a sustainable process to decrease the pixel pitch. It consists in a direct integration by bonding silica of InP/InGaAs/InP structure above a finished read-out circuit (with CMOS technology) and circular diode architecture named “LoopHoles”. This diode consists in via-hole through the III-V materials and bonding silica layer down to top metal layer in the readout circuit for each active pixel. Via-hole is also used to diffuse laterally zinc in III-V layer in order to create p-type doping area. Because of the read-out circuit, temperature of diffusion has to be below 400°C which induces parasitic phenomena’s. We have found that a Hf02 coating on InP surface prevent this degradation while allowing zinc diffusion. We were able to control depth of p-n junction inside InP and InGaAs. We also investigated few steps of the processes like the molecular bonding, via etching and metallization. Finally, we succeeded to produce LoopHole photodiodes on bulk InP and on bonded materials with a high spectral efficiency, low pitch and a lower dark currant of 150 fA at room temperature
Hecht, Anna E. "Thermal Drift Compensation in Non-Uniformity Correction for an InGaAs PIN Photodetector 3D Flash LiDAR Camera". University of Dayton / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1607959309040459.
Testo completoOzer, Selcuk. "Insb And Inassb Infrared Photodiodes On Alternative Substrates And Inp/ingaas Quantum Well Infrared Photodetectors: Pixel And Focal Plane Array Performance". Phd thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/3/12606097/index.pdf.
Testo completo1010 and 7.5×
108 cmHz½
/W at 77 K and 240 K, respectively, showing that the alloy is promising for both cooled and near room temperature detectors. Under moderate reverse bias, 80 K RoA product limiting mechanism is trap assisted tunneling, which introduces considerable 1/f noise. InSb/Si photodiodes display peak 77 K detectivity as high as ~1×
1010 cmHz 1/2/W and reasonably high peak quantum efficiency in spite of large lattice mismatch. RoA product of detectors at 80 K is limited by Ohmic leakage with small activation energy (25 meV). Bias and temperature dependence of 1/f noise is in reasonable agreement with Kleinpenning&rsquo
s mobility fluctuation model, confirming the validity of this approach. The second part of the study concentrates on InP/In0.53Ga0.47As QWIPs, and 640×
512 FPA, which to our knowledge, is the largest format InP/InGaAs QWIP FPA reported. InP/InGaAs QWIPs yield quantum efficiency-gain product as high as 0.46 under moderate bias. At 70 K, detector performance is background limited with f/2 aperture up to ~3 V bias where peak responsivity (2.9 A/W) is thirty times higher than that of the Al0.275Ga0.725As/GaAs QWIP with similar spectral response. Impact ionization in InP/InGaAs QWIPs does not start until the average electric-field reaches 25 kV/cm, maintaining high detectivity under moderate bias. The 640×
512 InP/InGaAs QWIP FPA yields noise equivalent temperature difference of ~40 mK at an FPA temperature as high as 77 K and reasonably low NETD even with short integration times (t). 70 K NETD values of the FPA with f/1.5 optics are 36 and 64 mK under &ndash
0.5 V (t=11 ms) and &ndash
2 V (t=650 Rs) bias, respectively. The results clearly show the potential of InP/InGaAs QWIPs for thermal imaging applications requiring short integration times. Keywords: Cooled infrared detectors, InAsSb, QWIP, focal plane array.
Pogany, Dionyz. "Etude du bruit télégraphique, du courant d’obscurité et des niveaux profonds dans les photodiodes InP/InGaAs/InP en désaccord de maille". Lyon, INSA, 1994. http://www.theses.fr/1994ISAL0044.
Testo completoDark current and low frequency noise are the principal performance limitations of lattice-mismatched InGaAs/InP linear photodetector arrays for space applications in the 1,7 micrometer wavelength range. Excess noise in these devices has essentially a form of the Random Telegraph Signal (RTS). This work mainly concern the study of physical mechanisme controlling the current and noise. We have performed characterisation, classification and modelling of excess crrents. RTS noise has been studied in time and frequency domain. Results show that RTS noise is due to fluctuations of excess current which flows through a dislocation related extended defetc. This current is modulated by a charge fluctuation or structural reconfiguration of complex defects located at the leakage site. To interpret the results we have developped previously proposed RTS noise models for bipolar devices, Measurments of excess noise have been correlated with spatially resolved technique like LBIC. We discuss the influence of material and technological defects as well as surface and bulk origin of RTS noise
Libri sul tema "InGaAs photodiodes"
Blaser, Markus. Monolithically integrated InGaAs/Inp photodiode-junction field-effect transistor receivers for fiber-optic telecommunication. Konstanz: Hartung-Gorre, 1997.
Cerca il testo completoBitter, Martin. InP/InGaAs pin-photodiode arrays for parallel optical interconnects and monolithic InP/InGaAs pin/HBT optical receivers for 10-Gb/s and 40-Gb/s. Konstanz: Hartung-Gorre, 2001.
Cerca il testo completoInGaAs Avalanche Photodiodes for Ranging and Lidar. Elsevier, 2020. http://dx.doi.org/10.1016/c2017-0-04776-6.
Testo completoHuntington, Andrew S. InGaAs Avalanche Photodiodes for Ranging and Lidar. Elsevier Science & Technology, 2020.
Cerca il testo completoHuntington, Andrew S. InGaAs Avalanche Photodiodes for Ranging and Lidar. Elsevier Science & Technology, 2020.
Cerca il testo completoO'Reilly, Patrick J. Effects of 30 MEV electron irradation on InGaAsp LEDS and InGaAs photodiodes. 1986.
Cerca il testo completoYu, Young-June. Noise properties of InGaAs/InAlAs multiquantum-well heterostructure p-i-n photodiodes. 1989.
Cerca il testo completoBerlin, Technische Universität, a cura di. InGaAsP-Rippen- und Streifenwellenleiter integriert mit InGaAs-Photodioden durch Vertikal- und Horizontalkupplung: Technologie und physikalische Eigenschaften. 1991.
Cerca il testo completoZürich, Eidgenössische Technische Hochschule, a cura di. Monolithically integrated InGaAs/InP photodiode-junction field-effect transistor receivers for fiber-optic telecommunication. 1996.
Cerca il testo completoCapitoli di libri sul tema "InGaAs photodiodes"
Bowers, J. E., C. A. Burrus e R. S. Tucker. "22-GHz Bandwidth InGaAs/InP PIN Photodiodes". In Picosecond Electronics and Optoelectronics, 180–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-70780-3_35.
Testo completoKobayashi, Masahiro, e Takao Kaneda. "Reliability Testing of Planar InGaAs Avalanche Photodiodes". In Semiconductor Device Reliability, 413–21. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2482-6_23.
Testo completoRyzhii, M., e V. Ryzhii. "Ensemble Monte Carlo Particle Modeling of IngaAs/InP Uni-Traveling-Carrier Photodiodes". In Simulation of Semiconductor Processes and Devices 2001, 312–15. Vienna: Springer Vienna, 2001. http://dx.doi.org/10.1007/978-3-7091-6244-6_70.
Testo completoAlbrecht, H. "Pin Photodiodes and Field-Effect Transistors for Monolithically Integrated InP/InGaAs Optoelectronic Circuits". In Micro System Technologies 90, 767–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-45678-7_110.
Testo completoŠatka, A., D. W. E. Allsopp, J. Kováč, F. Uherek, B. Rheinländer e V. Gottschalch. "Design of InGaAs/InAIGaAs/InP RCE PIN Photodiode". In Heterostructure Epitaxy and Devices, 301–4. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0245-9_54.
Testo completoZirngibl, M., J. C. Bischoff, R. Sachot, M. Ilegems, P. Beaud e W. Hodel. "An InGaAs/GaAs Strained Superlattice MSM Photodiode for Fast Light Detection at 1.3 μm". In ESSDERC ’89, 77–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-52314-4_15.
Testo completoNamekata, Naoto, Shunsuke Adachi e Shuichiro Inoue. "High-Speed Single-Photon Detection Using 2-GHz Sinusoidally Gated InGaAs/InP Avalanche Photodiode". In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 34–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11731-2_4.
Testo completoMa, Zongfeng, Ming Zhang e Panfeng Wu. "Research on the Optimal Design of Heterodyne Technique Based on the InGaAs-PIN Photodiode". In 5th International Symposium of Space Optical Instruments and Applications, 205–12. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-27300-2_20.
Testo completoSchohe, K., J. Y. Longère, S. Krawczyk, B. Vilotitch, C. Lenoble, M. Villard e X. Hugon. "Scanning Photoluminescence Assessment MOCVD InGaAs/InP Lattice Mismatched Heterostructures During the Fabrication of Photodiode Arrays". In ESSDERC ’89, 503–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-52314-4_103.
Testo completoHuntington, Andrew S. "InGaAs Linear-Mode Avalanche Photodiodes". In Encyclopedia of Modern Optics, 415–29. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-12-803581-8.09421-2.
Testo completoAtti di convegni sul tema "InGaAs photodiodes"
Nakamura, Takuma, Dahyeon Lee, Jason Horng, John D. Teufel e Franklyn Quinlan. "Low noise microwave generation for quantum information systems via cryogenic extended-InGaAs photodiodes". In CLEO: Science and Innovations, STu4I.3. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.stu4i.3.
Testo completo"InGaAs Photodiodes and Photoreceivers". In 2004 IEEE International Topical Meeting on Microwave Photonics. IEEE, 2004. http://dx.doi.org/10.1109/mwp.2004.1396909.
Testo completoAchouche, M., G. Glastre, C. Caillaud, M. Lahrichi e D. Carpentier. "InGaAs high speed communication photodiodes". In LEOS 2009 -22nd Annuall Meeting of the IEEE Lasers and Electro-Optics Society (LEO). IEEE, 2009. http://dx.doi.org/10.1109/leos.2009.5343096.
Testo completoRogalski, Antoni. "Performance limitations of InGaAs photodiodes". In International Conference on Solid State Crystals '98, a cura di Antoni Rogalski e Jaroslaw Rutkowski. SPIE, 1999. http://dx.doi.org/10.1117/12.344747.
Testo completoWey, Y. G., K. Giboney, D. L. Crawford, J. E. Bowers, M. J. Rodwell, P. Silvestre, M. J. Hafich e G. Y. Robinson. "Ultrafast Graded Double Heterostructure p-i-n Photodiode". In Picosecond Electronics and Optoelectronics. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/peo.1991.thc3.
Testo completoDoldissen, W., R. J. Deri, R. J. Hawkins, R. Bhat, J. B. D. Soole, L. M. Schiavone, M. Seto, N. Andreadakis, Y. Silberberg e M. A. Koza. "Efficient vertical coupling of photodiodes to InGaAsP rib waveguides". In Integrated Photonics Research. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/ipr.1991.thf7.
Testo completoSong, Bowen, Bei Shi, Si Zhu, Simone Šuran Brunelli e Jonathan Klamkin. "InGaAs Photodiodes on Silicon by Heteroepitaxy". In Optoelectronics and Communications Conference. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/oecc.2021.w3f.4.
Testo completoPauchard, Alexandre, Phil Mages, Yimin Kang, Martin Bitter, Z. Pan, D. Sengupta, Steve Hummel, Yu-Hwa Lo e Paul K. L. Yu. "Wafer-bonded InGaAs/silicon avalanche photodiodes". In Symposium on Integrated Optoelectronic Devices, a cura di Gail J. Brown e Manijeh Razeghi. SPIE, 2002. http://dx.doi.org/10.1117/12.467674.
Testo completoCampbell, Joe C., Ravi Kuchibhotla, Anand Srinivasan, Chun Lei, Dennis G. Deppe, Yue Song He e Ben G. Streetman. "Resonance-enhanced, low-voltage InGaAs avalanche photodiode". In Integrated Photonics Research. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/ipr.1991.we5.
Testo completoBowers, J. E., C. A. Burrus e R. S. Tucker. "22-GHz Bandwidth InGaAs/InP PIN Photodiodes". In Picosecond Electronics and Optoelectronics. Washington, D.C.: Optica Publishing Group, 1985. http://dx.doi.org/10.1364/peo.1985.tha3.
Testo completoRapporti di organizzazioni sul tema "InGaAs photodiodes"
Tabor, Steven. Spectral and Spatial Quantum Efficiency of AlGaAs/GaAs and InGaAs/InP PIN Photodiodes. Portland State University Library, gennaio 2000. http://dx.doi.org/10.15760/etd.6644.
Testo completo