Letteratura scientifica selezionata sul tema "Information storage"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Information storage".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Information storage"
BEAM, C. A. "Information Storage". Science 228, n. 4703 (31 maggio 1985): 1040. http://dx.doi.org/10.1126/science.3992244.
Testo completoHeber, Joerg. "Information storage". Nature Materials 6, n. 11 (novembre 2007): 807. http://dx.doi.org/10.1038/nmat2048.
Testo completoMaddox, John. "Quantum information storage". Nature 327, n. 6118 (maggio 1987): 97. http://dx.doi.org/10.1038/327097a0.
Testo completoVillacampa, Y., P. Sastre-Vázquez, J. A. Reyes e F. García-Alonso. "INFORMATION STORAGE SYSTEM". Cybernetics and Systems 41, n. 4 (28 maggio 2010): 307–16. http://dx.doi.org/10.1080/01969721003778576.
Testo completoSANO, Masayuki. "Information storage media." Journal of Information Processing and Management 32, n. 5 (1989): 415–25. http://dx.doi.org/10.1241/johokanri.32.415.
Testo completoByszewski, P., E. Kowalska, M. Popławska, M. Łuczak e Z. Klusek. "Molecules for information storage". Journal of Magnetism and Magnetic Materials 249, n. 3 (settembre 2002): 486–91. http://dx.doi.org/10.1016/s0304-8853(02)00475-4.
Testo completoKOSHLAND, D. E. "In Reply: Information Storage". Science 228, n. 4703 (31 maggio 1985): 1040. http://dx.doi.org/10.1126/science.228.4703.1040-a.
Testo completoWylie, J. J., M. W. Bigrigg, J. D. Strunk, G. R. Ganger, H. Kiliccote e P. K. Khosla. "Survivable information storage systems". Computer 33, n. 8 (2000): 61–68. http://dx.doi.org/10.1109/2.863969.
Testo completoMIURA, YOSHIMASA. "Cutting edge of the Information Storage Technologies. Information Storage Technology for IT Era." Journal of the Institute of Electrical Engineers of Japan 122, n. 4 (2002): 216–18. http://dx.doi.org/10.1541/ieejjournal.122.216.
Testo completoFukuzawa, Kenji, Mitsuo Hirata, Shigeo Nakamura e Hiroshi Tani. "MoF-2 JSME-IIP DIVISION ACADEMIC ROADMAP ON INFORMATION STORAGE". Proceedings of JSME-IIP/ASME-ISPS Joint Conference on Micromechatronics for Information and Precision Equipment : IIP/ISPS joint MIPE 2015 (2015): _MoF—2–1_—_MoF—2–2_. http://dx.doi.org/10.1299/jsmemipe.2015._mof-2-1_.
Testo completoTesi sul tema "Information storage"
Scoffin, Robert A. "New materials for optical information storage". Thesis, University of Oxford, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365756.
Testo completoNguyen, Hieu Duy. "It and Bit| Decoherence and Information Storage". Thesis, University of California, Santa Barbara, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3612010.
Testo completoWe studied two topics: i) how much physical resources are needed to store information and ii) decoherent histories theory applied to Grover search. Given a system consisting of d degrees of freedom each of mass m to store an amount S of information, we find that its average energy, 〈H〉, or size, 〈r2〉, can be made arbitrarily small individually, but its product 〈P〉 = 〈H〉〈 r2〉 is bounded below by (exp{S/d} − 1)2d2/m. This result is obtained in a nonrelativistic, quantum mechanical setting, and it is independent of earlier thermodynamical results such as the Bekenstein bound on the entropy of black holes.
The second topic is decoherent histories applied to the Grover search problem. The theory of decoherent histories is an attempt to derive classical physics from positing only quantum laws at the fundamental level without notions of a classical apparatus or collapse of the wave-function. Searching for a marked target in a list of N items requires Ω( N) oracle queries when using a classical computer, while a quantum computer can accomplish the same task in O([special characters omitted]) queries using Grover's quantum algorithm. We study a closed quantum system executing Grover algorithm in the framework of decoherent histories and find it to be an exactly solvable model, thus yielding an alternate derivation of Grover's famous result. We also subject the Grover-executing computer to a generic external influence without needing to know the specifics of the Hamiltonian insofar as the histories decohere. Depending on the amount of decoherence, which is captured in our model by a single parameter related to the amount of information obtained by the environment, the search time can range from quantum to classical. Thus, we identify a key effect induced by the environment that can adversely affect a quantum computer's performance and demonstrate exactly how classical computing can emerge from quantum laws.
Bejjani, Ghassan J. "Information storage and access in decisionmaking organizations". Thesis, Massachusetts Institute of Technology, 1985. http://hdl.handle.net/1721.1/15142.
Testo completoMICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING
Bibliography: leaves 92-94.
by Ghassan J. Bejjani.
M.S.
Gao, Qiang 1964. "Noise reduction techniques for holographic information storage". Diss., The University of Arizona, 1998. http://hdl.handle.net/10150/282620.
Testo completoFohlin, Johan. "Home Storage Manager". Thesis, Högskolan i Gävle, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-17494.
Testo completoShadrin, Alexey [Verfasser]. "Positional Information Storage in Sequence Patterns / Alexey Shadrin". Berlin : Freie Universität Berlin, 2014. http://d-nb.info/1060368056/34.
Testo completoVarshney, Lav R. (Lav Raj). "Optimal information storage : nonsequential sources and neural channels". Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/37851.
Testo completoThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
MIT Institute Archives copy: pages 101-163 bound in reverse order.
Includes bibliographical references (p. 141-163).
Information storage and retrieval systems are communication systems from the present to the future and fall naturally into the framework of information theory. The goal of information storage is to preserve as much signal fidelity under resource constraints as possible. The information storage theorem delineates average fidelity and average resource values that are achievable and those that are not. Moreover, observable properties of optimal information storage systems and the robustness of optimal systems to parameter mismatch may be determined. In this thesis, we study the physical properties of a neural information storage channel and also the fundamental bounds on the storage of sources that have nonsequential semantics. Experimental investigations have revealed that synapses in the mammalian brain possess unexpected properties. Adopting the optimization approach to biology, we cast the brain as an optimal information storage system and propose a theoretical framework that accounts for many of these physical properties. Based on previous experimental and theoretical work, we use volume as a limited resource and utilize the empirical relationship between volume anrid synaptic weight.
(cont.) Our scientific hypotheses are based on maximizing information storage capacity per unit cost. We use properties of the capacity-cost function, e-capacity cost approximations, and measure matching to develop optimization principles. We find that capacity-achieving input distributions not only explain existing experimental measurements but also make non-trivial predictions about the physical structure of the brain. Numerous information storage applications have semantics such that the order of source elements is irrelevant, so the source sequence can be treated as a multiset. We formulate fidelity criteria that consider asymptotically large multisets and give conclusive, but trivialized, results in rate distortion theory. For fidelity criteria that consider fixed-size multisets. we give some conclusive results in high-rate quantization theory, low-rate quantization. and rate distortion theory. We also provide bounds on the rate-distortion function for other nonsequential fidelity criteria problems. System resource consumption can be significantly reduced by recognizing the correct invariance properties and semantics of the information storage task at hand.
by Lav R. Varshney.
S.M.
Adar, Eytan 1975. "Hybrid-search and storage of semi-structured information". Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/46274.
Testo completoIncludes bibliographical references (p. 113-118).
Given today's tangle of digital information, one of the hardest tasks for computer users of information systems is finding anything in the mess. For a number of well documented reasons including the amazing growth in the Internet's popularity and the drop in the cost of storage, the amount of information on the net as well as on a user's local computer, has increased dramatically in recent years. Although this readily available information should be extremely beneficial for computer users, paradoxically it is now much harder to find anything. Many different solutions have been proposed to the general information seeking task of users, but few if any have addressed the needs of individuals or have leveraged the benefit of single-user interaction. The Haystack project is an attempt to answer the needs of the individual user. Once the user's information is represented in Haystack, the types of questions users may ask are highly varied. In this thesis we will propose a means of representing information in a robust framework within Haystack. Once the information is represented we describe a mechanism by which the diverse questions of the individual can be answered. This novel method functions by using a combination of existing information systems. We will call this combined system a hybrid-search system.
by Eytan Adar.
M.Eng.
Johnston, Reece G. "Secure storage via information dispersal across network overlays". Thesis, The University of Alabama in Huntsville, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10157562.
Testo completoIn this paper, we describe a secure distributed storage model to be used especially with untrusted devices, most notably cloud storage devices. The model does so through a peer-to-peer overlay and storage protocol designed to run on existing networked systems. We utilize a structured overlay that is organized in a layered, hierarchical manner based on the underlying network structure. These layers are used as storage sites for pieces of data near the layer at which that data is needed. This data is generated and distributed via a technique called an information dispersal algorithm (IDA) which utilizes an erasure code such as Cauchy Reed-Solomon (RS). Through the use of this IDA, the data pieces are organized across neighboring layers to maximize locality and prevent a compromise within one layer from compromising the data of that layer. Speci?cally, for a single datum to become compromised, a minimum of two layers would have to become compromised. As a result, security, survivability, and availability of the data is improved compared to other distributed storage systems. We present signi?cant background in this area followed by an analysis of similar distributed storage systems. Then, an overview of our proposed model is given along with an in-depth analysis, including both experimental results and theoretical analysis. The recorded overhead (encoding/decoding times and associated data sizes) shows that such a scheme can be utilized with little increase in overall latency. Making the proposed model an ideal choice for any distributed storage needs.
Shrestha, Tej Bahadur. "Heterocycles for life-sciences applications and information storage". Diss., Kansas State University, 2010. http://hdl.handle.net/2097/13540.
Testo completoDepartment of Chemistry
Stefan H. Bossmann
The photochromic spirodihydroindolizine/betaine (DHI/B) system has been reinvestigated applying picosecond, microsecond, stationary absorption measurements, and NMR-kinetics. The first surprise was that the electronic structure of the betaines is quite different than commonly assumed. The photochemical ring-opening of DHIs to betaines is a conrotatory 1,5 electrocyclic reaction, as picosecond absorption spectroscopy confirms. The (disrotatory) thermal ring-closing occurs from the cisoid betaine. The lifetime of the transoid betaine is 60 s at 300 K, whereas the lifetime of the cisoid isomer is of the order of 250 microseconds. According to these results, the electrocyclic back reaction of the betaines to the DHI is NOT rate determining, as previously thought, but the cisoid-transoid-isomerization of the betaine. Although the presence of a second nitrogen atom increases the photostability of the spirodihydroindolizine-pyridazine/betaine-system remarkably, the photochemical reaction mechanism appears to be exactly the same for spirodihydroindolizine-pyridazine/betaine-system. A nondestructive photoswitch or an information recording systems has been explored using styryl-quinolyldihydroindolizines. Both isomers DHI and betaine are fluorescent. When the blue betaine is stabilized in a thin polymethyl methacrylate (PMMA) matrix, it is stable for several hours even in room temperature and very stable at 77K. Although irradiation of visible light = 532 nm allows the photo-induced reaction of the Betaine back to the DHI, a nondestructive read-out can be performed at λ = 645 nm upon excitation with λ = 580 nm. Image recording (write) and read-out, as well as information storage (at 77K) have been demonstrated. Charged and maleimide-functionalized DHI/B systems have beed synthesized for use as photochemical gates of the mycobacterial channel porin MspA. Positively charged and maleimide functionalized DHI groups that were attached to the DHI/B-system permit the binding of the photoswitch to selective positions in the channel proteins due to the presence of a cysteine moiety. An inexpensive new method for the large scale synthesis of coelenterazine is developed. A modified Negishi coupling reaction is used to make pyrazine intermediates from aminopyrazine as an economical starting material. This method permits the use of up to 1g coelenterazine per kg body weight and day, which turns the renilla transfected stem cells into powerful light sources.
Libri sul tema "Information storage"
Große, Cornelia S., e Rolf Drechsler, a cura di. Information Storage. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-19262-4.
Testo completoDudman, K. E. Data, information & information storage. London: University of London, External Advisory Service, 1992.
Cerca il testo completoHammersley, P. Data, information & information storage. 2a ed. London: University of London, External Publications, 1995.
Cerca il testo completoKorfhage, Robert R. Information storage and retrieval. New York: Wiley Computer Pub., 1997.
Cerca il testo completoM, Taratorin A., a cura di. Magnetic information storage technology. San Diego: Academic Press, 1999.
Cerca il testo completoMittal, K. L. Polymers in Information Storage Technology. Boston, MA: Springer US, 1989.
Cerca il testo completoChung, Soon M., a cura di. Multimedia Information Storage and Management. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-1431-8.
Testo completoMittal, K. L., a cura di. Polymers in Information Storage Technology. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0843-0.
Testo completoKowalski, Gerald J., e Mark T. Maybury. Information Storage and Retrieval Systems. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/b116174.
Testo completo1945-, Mittal K. L., a cura di. Polymers in information storage technology. New York: Plenum Press, 1989.
Cerca il testo completoCapitoli di libri sul tema "Information storage"
Lizier, Joseph T. "Information Storage". In The Local Information Dynamics of Distributed Computation in Complex Systems, 53–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32952-4_3.
Testo completoPartridge, L. Donald, e Lloyd D. Partridge. "Information Storage". In Nervous System Actions and Interactions, 175–93. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0425-2_9.
Testo completoFahle, Manfred. "Information Processing and Storage in the Brain". In Information Storage, 1–39. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19262-4_1.
Testo completoKozlov, Michail D. "Verbal Short-Term Memory: Insights in Human Information Storage". In Information Storage, 41–78. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19262-4_2.
Testo completoShirinzadeh, Saeideh, e Rolf Drechsler. "In-Memory Computing: The Integration of Storage and Processing". In Information Storage, 79–110. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19262-4_3.
Testo completoFroehlich, Saman, Daniel Große e Rolf Drechsler. "Approximate Memory: Data Storage in the Context of Approximate Computing". In Information Storage, 111–33. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19262-4_4.
Testo completoBeßler, Daniel, Asil Kaan Bozcuoğlu e Michael Beetz. "Information System for Storage, Management, and Usage for Embodied Intelligent Systems". In Information Storage, 135–59. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19262-4_5.
Testo completoBöhling, Rieke, e Christine Lohmeier. "On “Storing Information” in Families: (Mediated) Family Memory at the Intersection of Individual and Collective Remembering". In Information Storage, 161–77. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19262-4_6.
Testo completoHagedoorn, Berber. "Cultural Memory and Screen Culture". In Information Storage, 179–97. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19262-4_7.
Testo completoKramp, Leif. "The Complicated Preservation of the Television Heritage in a Digital Era". In Information Storage, 199–238. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19262-4_8.
Testo completoAtti di convegni sul tema "Information storage"
Lee, Kyung-Geun, In-Oh Hwang, Chang-Min Park, Yoon-Gi Kim, In-Sik Park e Dong-Ho Shin. "Effect of first information layer on second information layer in dual-layer disc". In Optical Data Storage, a cura di Terril Hurst e Seiji Kobayashi. SPIE, 2002. http://dx.doi.org/10.1117/12.453413.
Testo completoHayami, Atsushi A., Tsuyoshi Oki, Makoto M. Itonaga e Ken Miyazaki. "Extra information recording on D8-15 modulation". In Optical Data Storage, a cura di Terril Hurst e Seiji Kobayashi. SPIE, 2002. http://dx.doi.org/10.1117/12.453370.
Testo completoMansuripur, M., P. K. Khulbe, S. M. Kuebler, J. W. Perry, M. S. Giridhar e N. Peyghambarian. "Information Storage and Retrieval using Macromolecules as Storage Media". In Optical Data Storage. Washington, D.C.: OSA, 2003. http://dx.doi.org/10.1364/ods.2003.tuc2.
Testo completoMansuripur, Masud, Pramod K. Khulbe, Stephen M. Kuebler, Joseph W. Perry, M. S. Giridhar, James K. Erwin, Kibyung Seong, Seth R. Marder e Nasser Peyghambarian. "Information storage and retrieval using macromolecules as storage media". In Optical Data Storage 2003, a cura di Michael O'Neill e Naoyasu Miyagawa. SPIE, 2003. http://dx.doi.org/10.1117/12.533057.
Testo completoThomas, Fred C. "Exploring optical multilevel information storage using subwavelength-sized media structures". In Optical Data Storage. Washington, D.C.: OSA, 2003. http://dx.doi.org/10.1364/ods.2003.tue43p.
Testo completoLai, Ching-Ming. "Study and realization of a non-contact power supply system with fast information transmission capability". In Energy Storage. IEEE, 2011. http://dx.doi.org/10.1109/pesa.2011.5982943.
Testo completoAbbasi, Hasan, Greg Eisenhauer, Scott Klasky, Karsten Schwan e Matthew Wolf. "Extracting information ASAP!" In 2010 5th Petascale Data Storage Workshop (PDSW). IEEE, 2010. http://dx.doi.org/10.1109/pdsw.2010.5668088.
Testo completoMansuripur, Masud. "Information Storage and Retrieval Using Macromolecules as Storage Media". In ASME 4th Integrated Nanosystems Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/nano2005-87089.
Testo completoKim, Dong-Oh, Myung-Hoon Cha e Hong-Yeon Kim. "Remote Direct Storage Management for Exa-Scale Storage". In Future Generation Information Technology 2016. Science & Engineering Research Support soCiety, 2016. http://dx.doi.org/10.14257/astl.2016.139.04.
Testo completoPitsyuga, Vitaly V., Michael Y. Kolesnikov e Igor V. Kosyak. "Protection method for an optical information carrier". In International Conference on Optical Storage, a cura di Viacheslav V. Petrov e Sergei V. Svechnikov. SPIE, 1997. http://dx.doi.org/10.1117/12.267711.
Testo completoRapporti di organizzazioni sul tema "Information storage"
Seeman, Nadrian, W. Morrison, E. Monteith, D. Gallaro e J. Filsinger. DNA Nanotechnology for Massive Information Storage. Fort Belvoir, VA: Defense Technical Information Center, luglio 2001. http://dx.doi.org/10.21236/ada398265.
Testo completoJones, Robert R. Information Storage and Processing in Rydberg Atoms. Fort Belvoir, VA: Defense Technical Information Center, dicembre 2008. http://dx.doi.org/10.21236/ada496451.
Testo completoHusa, E. I., R. E. Raymond, R. K. Welty, S. M. Griffith, B. M. Hanlon, R. R. Rios e N. J. Vermeulen. Hanford Site Waste Storage Tank Information Notebook. Office of Scientific and Technical Information (OSTI), luglio 1993. http://dx.doi.org/10.2172/10182105.
Testo completoRaddatz, M. G., e M. D. Waters. Information handbook on independent spent fuel storage installations. Office of Scientific and Technical Information (OSTI), dicembre 1996. http://dx.doi.org/10.2172/419087.
Testo completoLawandy, Nabil M. Novel Composite Materials for Nonlinear Optics and Information Storage. Fort Belvoir, VA: Defense Technical Information Center, aprile 1997. http://dx.doi.org/10.21236/ada325676.
Testo completoMcCall, R. P., J. M. Ginder, J. M. Leng, K. A. Coplin, H. J. Ye, A. J. Epstein, G. E. Asturias et al. Photoinduced Absorption and Erasable Optical Information Storage in Polyanilines. Fort Belvoir, VA: Defense Technical Information Center, marzo 1991. http://dx.doi.org/10.21236/ada234108.
Testo completoHuber, George P. A Study of Organizational Information Search, Acquisition, Storage and Retrieval. Fort Belvoir, VA: Defense Technical Information Center, agosto 1986. http://dx.doi.org/10.21236/ada172063.
Testo completoDiCerbo, J. Excluded USTs: RCRA Subtitle 1, Underground Storage Tanks. RCRA Information Brief. Office of Scientific and Technical Information (OSTI), maggio 1993. http://dx.doi.org/10.2172/10143292.
Testo completoKrishnan, Kannan M. CRADA Final Report: Tailored Microstructures in Advanced Materials for Information Storage. Office of Scientific and Technical Information (OSTI), febbraio 2002. http://dx.doi.org/10.2172/1157020.
Testo completoKryder, Mark H., David Thuel, Chris Bowman e Ching-Hsing Huang. Fabrication of Material and Devices for Very High Density Information Storage. Fort Belvoir, VA: Defense Technical Information Center, novembre 1986. http://dx.doi.org/10.21236/ada174548.
Testo completo