Articoli di riviste sul tema "Inertial Bregman proximal gradient"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Inertial Bregman proximal gradient".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.
Mukkamala, Mahesh Chandra, Peter Ochs, Thomas Pock e Shoham Sabach. "Convex-Concave Backtracking for Inertial Bregman Proximal Gradient Algorithms in Nonconvex Optimization". SIAM Journal on Mathematics of Data Science 2, n. 3 (gennaio 2020): 658–82. http://dx.doi.org/10.1137/19m1298007.
Testo completoKabbadj, S. "Inexact Version of Bregman Proximal Gradient Algorithm". Abstract and Applied Analysis 2020 (1 aprile 2020): 1–11. http://dx.doi.org/10.1155/2020/1963980.
Testo completoZhou, Yi, Yingbin Liang e Lixin Shen. "A simple convergence analysis of Bregman proximal gradient algorithm". Computational Optimization and Applications 73, n. 3 (4 aprile 2019): 903–12. http://dx.doi.org/10.1007/s10589-019-00092-y.
Testo completoHanzely, Filip, Peter Richtárik e Lin Xiao. "Accelerated Bregman proximal gradient methods for relatively smooth convex optimization". Computational Optimization and Applications 79, n. 2 (7 aprile 2021): 405–40. http://dx.doi.org/10.1007/s10589-021-00273-8.
Testo completoMahadevan, Sridhar, Stephen Giguere e Nicholas Jacek. "Basis Adaptation for Sparse Nonlinear Reinforcement Learning". Proceedings of the AAAI Conference on Artificial Intelligence 27, n. 1 (30 giugno 2013): 654–60. http://dx.doi.org/10.1609/aaai.v27i1.8665.
Testo completoYang, Lei, e Kim-Chuan Toh. "Bregman Proximal Point Algorithm Revisited: A New Inexact Version and Its Inertial Variant". SIAM Journal on Optimization 32, n. 3 (13 luglio 2022): 1523–54. http://dx.doi.org/10.1137/20m1360748.
Testo completoLi, Jing, Xiao Wei, Fengpin Wang e Jinjia Wang. "IPGM: Inertial Proximal Gradient Method for Convolutional Dictionary Learning". Electronics 10, n. 23 (3 dicembre 2021): 3021. http://dx.doi.org/10.3390/electronics10233021.
Testo completoXiao, Xiantao. "A Unified Convergence Analysis of Stochastic Bregman Proximal Gradient and Extragradient Methods". Journal of Optimization Theory and Applications 188, n. 3 (8 gennaio 2021): 605–27. http://dx.doi.org/10.1007/s10957-020-01799-3.
Testo completoWang, Qingsong, Zehui Liu, Chunfeng Cui e Deren Han. "A Bregman Proximal Stochastic Gradient Method with Extrapolation for Nonconvex Nonsmooth Problems". Proceedings of the AAAI Conference on Artificial Intelligence 38, n. 14 (24 marzo 2024): 15580–88. http://dx.doi.org/10.1609/aaai.v38i14.29485.
Testo completoHe, Lulu, Jimin Ye e Jianwei E. "Nonconvex optimization with inertial proximal stochastic variance reduction gradient". Information Sciences 648 (novembre 2023): 119546. http://dx.doi.org/10.1016/j.ins.2023.119546.
Testo completoZhu, Daoli, Sien Deng, Minghua Li e Lei Zhao. "Level-Set Subdifferential Error Bounds and Linear Convergence of Bregman Proximal Gradient Method". Journal of Optimization Theory and Applications 189, n. 3 (31 maggio 2021): 889–918. http://dx.doi.org/10.1007/s10957-021-01865-4.
Testo completoHua, Xiaoqin, e Nobuo Yamashita. "Block coordinate proximal gradient methods with variable Bregman functions for nonsmooth separable optimization". Mathematical Programming 160, n. 1-2 (27 gennaio 2016): 1–32. http://dx.doi.org/10.1007/s10107-015-0969-z.
Testo completoZhang, Xiaoya, Roberto Barrio, M. Angeles Martinez, Hao Jiang e Lizhi Cheng. "Bregman Proximal Gradient Algorithm With Extrapolation for a Class of Nonconvex Nonsmooth Minimization Problems". IEEE Access 7 (2019): 126515–29. http://dx.doi.org/10.1109/access.2019.2937005.
Testo completoKesornprom, Suparat, e Prasit Cholamjiak. "A modified inertial proximal gradient method for minimization problems and applications". AIMS Mathematics 7, n. 5 (2022): 8147–61. http://dx.doi.org/10.3934/math.2022453.
Testo completoBoţ, Radu Ioan, Ernö Robert Csetnek e Nimit Nimana. "An Inertial Proximal-Gradient Penalization Scheme for Constrained Convex Optimization Problems". Vietnam Journal of Mathematics 46, n. 1 (1 settembre 2017): 53–71. http://dx.doi.org/10.1007/s10013-017-0256-9.
Testo completoKankam, Kunrada, e Prasit Cholamjiak. "Double Inertial Proximal Gradient Algorithms for Convex Optimization Problems and Applications". Acta Mathematica Scientia 43, n. 3 (29 aprile 2023): 1462–76. http://dx.doi.org/10.1007/s10473-023-0326-x.
Testo completoAhookhosh, Masoud, Le Thi Khanh Hien, Nicolas Gillis e Panagiotis Patrinos. "A Block Inertial Bregman Proximal Algorithm for Nonsmooth Nonconvex Problems with Application to Symmetric Nonnegative Matrix Tri-Factorization". Journal of Optimization Theory and Applications 190, n. 1 (15 giugno 2021): 234–58. http://dx.doi.org/10.1007/s10957-021-01880-5.
Testo completoBao, Chenglong, Chang Chen null e Kai Jiang. "An Adaptive Block Bregman Proximal Gradient Method for Computing Stationary States of Multicomponent Phase-Field Crystal Model". CSIAM Transactions on Applied Mathematics 3, n. 1 (giugno 2022): 133–71. http://dx.doi.org/10.4208/csiam-am.so-2021-0002.
Testo completoWu, Zhongming, e Min Li. "General inertial proximal gradient method for a class of nonconvex nonsmooth optimization problems". Computational Optimization and Applications 73, n. 1 (18 febbraio 2019): 129–58. http://dx.doi.org/10.1007/s10589-019-00073-1.
Testo completoKesornprom, Suparat, Papatsara Inkrong, Uamporn Witthayarat e Prasit Cholamjiak. "A recent proximal gradient algorithm for convex minimization problem using double inertial extrapolations". AIMS Mathematics 9, n. 7 (2024): 18841–59. http://dx.doi.org/10.3934/math.2024917.
Testo completoKESORNPROM, Suparat, e Prasit CHOLAMJİAK. "A double proximal gradient method with new linesearch for solving convex minimization problem with application to data classification". Results in Nonlinear Analysis 5, n. 4 (30 dicembre 2022): 412–22. http://dx.doi.org/10.53006/rna.1143531.
Testo completoAdly, Samir, e Hedy Attouch. "Finite Convergence of Proximal-Gradient Inertial Algorithms Combining Dry Friction with Hessian-Driven Damping". SIAM Journal on Optimization 30, n. 3 (gennaio 2020): 2134–62. http://dx.doi.org/10.1137/19m1307779.
Testo completoPakkaranang, Nuttapol, Poom Kumam, Vasile Berinde e Yusuf I. Suleiman. "Superiorization methodology and perturbation resilience of inertial proximal gradient algorithm with application to signal recovery". Journal of Supercomputing 76, n. 12 (27 febbraio 2020): 9456–77. http://dx.doi.org/10.1007/s11227-020-03215-z.
Testo completoJolaoso, L. O., H. A. Abass e O. T. Mewomo. "A viscosity-proximal gradient method with inertial extrapolation for solving certain minimization problems in Hilbert space". Archivum Mathematicum, n. 3 (2019): 167–94. http://dx.doi.org/10.5817/am2019-3-167.
Testo completoBussaban, Limpapat, Attapol Kaewkhao e Suthep Suantai. "Inertial s-iteration forward-backward algorithm for a family of nonexpansive operators with applications to image restoration problems". Filomat 35, n. 3 (2021): 771–82. http://dx.doi.org/10.2298/fil2103771b.
Testo completoWang, Xiaofan, Zhiyuan Deng, Changle Wang e Jinjia Wang. "Inertial Algorithm with Dry Fraction and Convolutional Sparse Coding for 3D Localization with Light Field Microscopy". Proceedings of the AAAI Conference on Artificial Intelligence 38, n. 18 (24 marzo 2024): 20830–37. http://dx.doi.org/10.1609/aaai.v38i18.30072.
Testo completoLoría-Calderón, Tyrone M., Carlos D. Gómez-Carmona, Keven G. Santamaría-Guzmán, Mynor Rodríguez-Hernández e José Pino-Ortega. "Quantifying the External Joint Workload and Safety of Latin Dance in Older Adults: Potential Benefits for Musculoskeletal Health". Applied Sciences 14, n. 7 (22 marzo 2024): 2689. http://dx.doi.org/10.3390/app14072689.
Testo completoWu, Zhongming, Chongshou Li, Min Li e Andrew Lim. "Inertial proximal gradient methods with Bregman regularization for a class of nonconvex optimization problems". Journal of Global Optimization, 19 agosto 2020. http://dx.doi.org/10.1007/s10898-020-00943-7.
Testo completoGao, Xue, Xingju Cai, Xiangfeng Wang e Deren Han. "An alternating structure-adapted Bregman proximal gradient descent algorithm for constrained nonconvex nonsmooth optimization problems and its inertial variant". Journal of Global Optimization, 24 giugno 2023. http://dx.doi.org/10.1007/s10898-023-01300-0.
Testo completoZhang, Hui, Yu-Hong Dai, Lei Guo e Wei Peng. "Proximal-Like Incremental Aggregated Gradient Method with Linear Convergence Under Bregman Distance Growth Conditions". Mathematics of Operations Research, 25 giugno 2019. http://dx.doi.org/10.1287/moor.2019.1047.
Testo completoTakahashi, Shota, Mituhiro Fukuda e Mirai Tanaka. "New Bregman proximal type algorithms for solving DC optimization problems". Computational Optimization and Applications, 23 settembre 2022. http://dx.doi.org/10.1007/s10589-022-00411-w.
Testo completoLiu, Jin-Zan, e Xin-Wei Liu. "A dual Bregman proximal gradient method for relatively-strongly convex optimization". Numerical Algebra, Control & Optimization, 2021, 0. http://dx.doi.org/10.3934/naco.2021028.
Testo completoSun, Tao, Linbo Qiao e Dongsheng Li. "Nonergodic Complexity of Proximal Inertial Gradient Descents". IEEE Transactions on Neural Networks and Learning Systems, 2020, 1–14. http://dx.doi.org/10.1109/tnnls.2020.3025157.
Testo completoChen, Kangming, Ellen H. Fukuda e Nobuo Yamashita. "A proximal gradient method with Bregman distance in multi-objective optimization". Pacific Journal of Optimization, 2024. http://dx.doi.org/10.61208/pjo-2024-012.
Testo completoMukkamala, Mahesh Chandra, Jalal Fadili e Peter Ochs. "Global convergence of model function based Bregman proximal minimization algorithms". Journal of Global Optimization, 1 dicembre 2021. http://dx.doi.org/10.1007/s10898-021-01114-y.
Testo completoXiao, Xiantao. "A Unified Convergence Analysis of Stochastic Bregman Proximal Gradient and Extragradient Methods". Journal of Optimization Theory and Applications, 8 gennaio 2021. http://dx.doi.org/10.1007/s10957-020-01799-3.
Testo completoBonettini, S., M. Prato e S. Rebegoldi. "A new proximal heavy ball inexact line-search algorithm". Computational Optimization and Applications, 10 marzo 2024. http://dx.doi.org/10.1007/s10589-024-00565-9.
Testo completoDuan, Peichao, Yiqun Zhang e Qinxiong Bu. "New inertial proximal gradient methods for unconstrained convex optimization problems". Journal of Inequalities and Applications 2020, n. 1 (dicembre 2020). http://dx.doi.org/10.1186/s13660-020-02522-6.
Testo completoHertrich, Johannes, e Gabriele Steidl. "Inertial stochastic PALM and applications in machine learning". Sampling Theory, Signal Processing, and Data Analysis 20, n. 1 (22 aprile 2022). http://dx.doi.org/10.1007/s43670-022-00021-x.
Testo completoZhang, Xiaoya, Wei Peng e Hui Zhang. "Inertial proximal incremental aggregated gradient method with linear convergence guarantees". Mathematical Methods of Operations Research, 25 giugno 2022. http://dx.doi.org/10.1007/s00186-022-00790-0.
Testo completoGuo, Chenzheng, Jing Zhao e Qiao-Li Dong. "A stochastic two-step inertial Bregman proximal alternating linearized minimization algorithm for nonconvex and nonsmooth problems". Numerical Algorithms, 9 novembre 2023. http://dx.doi.org/10.1007/s11075-023-01693-9.
Testo completoJia, Zehui, Jieru Huang e Xingju Cai. "Proximal-like incremental aggregated gradient method with Bregman distance in weakly convex optimization problems". Journal of Global Optimization, 29 maggio 2021. http://dx.doi.org/10.1007/s10898-021-01044-9.
Testo completoKankam, Kunrada, Watcharaporn Cholamjiak e Prasit Cholamjiak. "New inertial forward–backward algorithm for convex minimization with applications". Demonstratio Mathematica 56, n. 1 (1 gennaio 2023). http://dx.doi.org/10.1515/dema-2022-0188.
Testo completoSun, Shuya, e Lulu He. "General inertial proximal stochastic variance reduction gradient for nonconvex nonsmooth optimization". Journal of Inequalities and Applications 2023, n. 1 (17 febbraio 2023). http://dx.doi.org/10.1186/s13660-023-02922-4.
Testo completoInkrong, Papatsara, e Prasit Cholamjiak. "Modified proximal gradient methods involving double inertial extrapolations for monotone inclusion". Mathematical Methods in the Applied Sciences, 30 aprile 2024. http://dx.doi.org/10.1002/mma.10159.
Testo completoValkonen, Tuomo. "Proximal methods for point source localisation". Journal of Nonsmooth Analysis and Optimization Volume 4, Original research articles (21 settembre 2023). http://dx.doi.org/10.46298/jnsao-2023-10433.
Testo completoMouktonglang, Thanasak, Wipawinee Chaiwino e Raweerote Suparatulatorn. "A proximal gradient method with double inertial steps for minimization problems involving demicontractive mappings". Journal of Inequalities and Applications 2024, n. 1 (15 maggio 2024). http://dx.doi.org/10.1186/s13660-024-03145-x.
Testo completo"Convergence of proximal gradient method with alternated inertial step for minimization problem". Advances in Fixed Point Theory, 2024. http://dx.doi.org/10.28919/afpt/8625.
Testo completoSilveti-Falls, Antonio, Cesare Molinari e Jalal Fadili. "Inexact and Stochastic Generalized Conditional Gradient with Augmented Lagrangian and Proximal Step". Journal of Nonsmooth Analysis and Optimization Volume 2, Original research articles (1 settembre 2021). http://dx.doi.org/10.46298/jnsao-2021-6480.
Testo completoCohen, Eyal, e Marc Teboulle. "Alternating and Parallel Proximal Gradient Methods for Nonsmooth, Nonconvex Minimax: A Unified Convergence Analysis". Mathematics of Operations Research, 8 febbraio 2024. http://dx.doi.org/10.1287/moor.2022.0294.
Testo completo