Letteratura scientifica selezionata sul tema "Immunothrombose"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Immunothrombose".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Immunothrombose"
Lou, Jianbo, Jianning Zhang, Quanjun Deng e Xin Chen. "Neutrophil extracellular traps mediate neuro-immunothrombosis". Neural Regeneration Research 19, n. 8 (11 dicembre 2023): 1734–40. http://dx.doi.org/10.4103/1673-5374.389625.
Testo completoHou, Mengyu, Jingxuan Wu, Jiangshuo Li, Meijuan Zhang, Hang Yin, Jingcheng Chen, Zhili Jin e Ruihua Dong. "Immunothrombosis: A bibliometric analysis from 2003 to 2023". Medicine 103, n. 37 (13 settembre 2024): e39566. http://dx.doi.org/10.1097/md.0000000000039566.
Testo completoGrover, Steven P., e Nigel Mackman. "Neutrophils, NETs, and immunothrombosis". Blood 132, n. 13 (27 settembre 2018): 1360–61. http://dx.doi.org/10.1182/blood-2018-08-868067.
Testo completoThakur, Manovriti, Carolina Victoria Cruz Junho, Sarah Maike Bernhard, Marc Schindewolf, Heidi Noels e Yvonne Döring. "NETs-Induced Thrombosis Impacts on Cardiovascular and Chronic Kidney Disease". Circulation Research 132, n. 8 (14 aprile 2023): 933–49. http://dx.doi.org/10.1161/circresaha.123.321750.
Testo completoChooklin, S., e S. Chuklin. "IMMUNOTHROMBOSIS AS A COMPONENT OF HOST DEFENCE". Fiziolohichnyĭ zhurnal 69, n. 5 (5 ottobre 2023): 89–99. http://dx.doi.org/10.15407/fz69.05.089.
Testo completoGoshua, George, Ayesha Butt e Alfred I. Lee. "Immunothrombosis: a COVID‐19 concerto". British Journal of Haematology 194, n. 3 (7 luglio 2021): 491–93. http://dx.doi.org/10.1111/bjh.17666.
Testo completoPalankar, Raghavendra, e Andreas Greinacher. "Challenging the concept of immunothrombosis". Blood 133, n. 6 (7 febbraio 2019): 508–9. http://dx.doi.org/10.1182/blood-2018-11-886267.
Testo completoNakazawa, Daigo, e Akihiro Ishizu. "Immunothrombosis in severe COVID-19". EBioMedicine 59 (settembre 2020): 102942. http://dx.doi.org/10.1016/j.ebiom.2020.102942.
Testo completoEbeyer-Masotta, Marie, Tanja Eichhorn, René Weiss, Vladislav Semak, Lucia Lauková, Michael B. Fischer e Viktoria Weber. "Heparin-Functionalized Adsorbents Eliminate Central Effectors of Immunothrombosis, including Platelet Factor 4, High-Mobility Group Box 1 Protein and Histones". International Journal of Molecular Sciences 23, n. 3 (5 febbraio 2022): 1823. http://dx.doi.org/10.3390/ijms23031823.
Testo completoRyan, Tristram A. J., Roger J. S. Preston e Luke A. J. O'Neill. "Immunothrombosis and the molecular control of tissue factor by pyroptosis: prospects for new anticoagulants". Biochemical Journal 479, n. 6 (28 marzo 2022): 731–50. http://dx.doi.org/10.1042/bcj20210522.
Testo completoTesi sul tema "Immunothrombose"
Garcia, Geoffrey. "Les NETs (Neutrophils Extracellular Traps) et les DNases au cours de la COVID-19". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0175.
Testo completoNeutrophil Extracellular Traps and DNases involvement during During infection, neutrophils release Neutrophil Extracellular Traps (NETs) to capture,prevent the dissemination of, and kill pathogens. NETs contribute to immunothrombosis byinteracting with platelets and immune cells, thus activating coagulation. However, excessiveproduction of NETs can cause thromboinflammation, leading to cellular and tissue damage. NETsare implicated in the pathophysiology of both arterial and venous thrombosis and in severe formsof COVID-19. They are physiologically degraded by DNases and macrophages. Currently, DNasetechniques are not standardized, and the mechanisms underlying the exacerbation of NETosis inCOVID-19 are not well understood. We first aimed to develop a functional assay to evaluate theability of DNases in human samples to degrade DNA or NETs. We established a robust,repeatable, and reproducible method that can be applied to both serum and plasma.Subsequently, we assessed the balance between NET markers and DNase activity according toCOVID-19 severity, and studied the mechanisms responsible for the NETs/DNases imbalance. Weconfirmed that NET markers increase with disease severity and demonstrated a decrease inDNase activity in hospitalized patients, resulting in an imbalance between NET markers andDNase activity in this group. The most severe patients exhibited decreased levels of DNase 1,with some harboring polymorphisms in the DNase 1 gene correlating with low protein levels.Additionally, we observed that critically ill patients had lower levels of plasmacytoid dendriticcells compared to those with severe disease. Reanalysis of public single cell RNA sequencing datashowed that plasmacytoid dendritic cells express less DNase 1L3 RNA as the disease severityincreases. This study demonstrates that COVID-19 severity is associated with an imbalance inNETs and DNases. Identifying this DNase deficit as an aggravating factor in patients could lead tonew therapeutic strategies, such as DNase administration, to prevent clinical deterioration
Jörg, Paul [Verfasser], e Christian [Akademischer Betreuer] Schulz. "Merkmale der Immunothrombose in arteriellen Thromben von Patienten mit akutem Myokardinfarkt und ischämischem Apoplex : eine explorative Studie zum Vergleich der Histologie und zur Korrelation klinischer Parameter / Paul Jörg ; Betreuer: Christian Schulz". München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2020. http://d-nb.info/1223849805/34.
Testo completoFrydman, Galit Hocsman. "The role of megakaryocytes and platelets in infection and immunothrombosis". Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/115756.
Testo completoCataloged from PDF version of thesis. Includes CD-ROM with 9 videos in the .avi format and 2 video in the .mp4 format.
Includes bibliographical references.
Megakaryocytes (MKs), one of the largest and rarest hematopoietic stem cells in the bone marrow, have traditionally played a primary role in hemostasis as precursors to platelets, which are importantly, one of the most abundant cell types in the peripheral circulation. While platelets are studied for their various roles in inflammation, the role of MKs within the innate immune system has not been explored. In a series of comprehensive in vitro experiments, we have demonstrated that both cord blood-derived MKs and MKs from a megakaryoblastic lineage have innate immune cell functions, including: phagocytosis, formation of extracellular traps, and chemotaxis towards pathogenic stimuli. MKs were also observed to directionally release platelets towards pathogenic stimuli. In addition to their primary role as immune cells, MKs were also shown to contain extranuclear histones, which the MKs release along with budding platelets into the circulation. These small packages of histones can play a major role in inflammation and immunothrombosis by promoting inflammation and coagulation. By evaluating blood and tissue samples from patients diagnosed with sepsis, we demonstrated that there is an increased MK concentration both in the peripheral circulation, as well as in the lungs and kidneys. Platelets from patients with sepsis also appeared to have a specific phenotype, including increased DNA and histone staining. MK number in the circulation and end-organs, as well as platelet histone expression appeared to be correlated with both prognosis and type of infection. This newly recognized role of MKs as functional innate immune cells may have significant implications for the role of MKs in conditions such as sepsis and, pending a more profound mechanistic understanding, may further lead to the development of novel targets for the treatment of sepsis.
by Galit Hocsman Frydman.
Sc. D.
Nordling, Sofia. "Vascular Interactions in Innate Immunity and Immunothrombosis: : Models of Endothelial Protection". Doctoral thesis, Uppsala universitet, Institutionen för immunologi, genetik och patologi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-283548.
Testo completoCapitoli di libri sul tema "Immunothrombose"
Nair, Arjun. "Imaging Critically Ill Patients". In Oxford Textbook of Respiratory Critical Care, 165–82. Oxford University PressOxford, 2023. http://dx.doi.org/10.1093/med/9780198766438.003.0018.
Testo completoAtti di convegni sul tema "Immunothrombose"
Hayden, Oliver, Klaus Diepold, Christian Klenk, Johanna Erber, David Fresacher, Stefan Röhrl, Manuel Lengl et al. "Immunothrombosis of acute care patients quantified with phase imaging flow cytometry". In Quantitative Phase Imaging X, a cura di YongKeun Park e Yang Liu. SPIE, 2024. http://dx.doi.org/10.1117/12.3022776.
Testo completoMueller, T., S. Meister, M. Thakur, M. Wohlrab, S. Bortoluzzi, N. Jensen, M. Rossner, M. Schmidt-Supprian, S. Massberg e B. Engelmann. "Microvascular immune cell recruitment regulating development of immunothrombosis in systemic bacterial infection". In 65th Annual Meeting of the Society of Thrombosis and Haemostasis Research. Georg Thieme Verlag KG, 2021. http://dx.doi.org/10.1055/s-0041-1728141.
Testo completo