Letteratura scientifica selezionata sul tema "Imbibition"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Imbibition".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Imbibition"
Yadav, Saroj R., e Manoj N. Mehta. "Analytical Approximate Expression for Cocurrent Imbibition during Immiscible Two-Phase Flow through Porous Media". Mathematical Problems in Engineering 2014 (2014): 1–6. http://dx.doi.org/10.1155/2014/638409.
Testo completoBochicchio, A., M. A. Coradeschi, P. Zienna, M. Bertolini e C. Vazzana. "Imbibitional injury in maize seed independent of chilling temperature". Seed Science Research 1, n. 2 (giugno 1991): 85–90. http://dx.doi.org/10.1017/s0960258500000702.
Testo completoSpaeth, Stephen C. "Imbibitional Stress and Transverse Cracking of Bean, Pea, and Chickpea Cotyledons". HortScience 21, n. 1 (febbraio 1986): 110–11. http://dx.doi.org/10.21273/hortsci.21.1.110.
Testo completoFang, Sidong, Jing Sun, DeHua Liu, Zhiyuan Yao e Bin Nie. "Experimental Study on Spontaneous Imbibition Characteristics of Fracturing Fluid at Cores from Different Layers in Fuling Shale Gas Reservoir". Geofluids 2021 (14 settembre 2021): 1–12. http://dx.doi.org/10.1155/2021/1157626.
Testo completoLI, CAOXIONG, YINGHAO Shen, HONGKUI GE, SHUAI SU e ZHIHUI YANG. "ANALYSIS OF SPONTANEOUS IMBIBITION IN FRACTAL TREE-LIKE NETWORK SYSTEM". Fractals 24, n. 03 (30 agosto 2016): 1650035. http://dx.doi.org/10.1142/s0218348x16500353.
Testo completoZhou, Changlin, Li Li, Rong Zeng, Weihua Chen e Yuxuan Liu. "Spontaneous imbibition in igneous rocks: effect of KCl concentration, confining pressure, and imbibition direction". Journal of Petroleum Exploration and Production Technology 10, n. 8 (4 settembre 2020): 3227–34. http://dx.doi.org/10.1007/s13202-020-00997-z.
Testo completoLiu, Xiong, Xin Fan, Jian Yin e Yang Zhang. "Imbibition Characteristic of Fractured Tight Sandstone Reservoir". Processes 10, n. 11 (25 ottobre 2022): 2189. http://dx.doi.org/10.3390/pr10112189.
Testo completoAristoff, Jeffrey M., Camille Duprat e Howard A. Stone. "Elastocapillary imbibition". International Journal of Non-Linear Mechanics 46, n. 4 (maggio 2011): 648–56. http://dx.doi.org/10.1016/j.ijnonlinmec.2010.09.001.
Testo completoRen, Xiaoxia, Aifen Li, Piyang Liu e Bingqing He. "Experiments and Modeling on the Influence of Interfacial Tension on Imbibition Height of Low-Permeability Reservoir". Geofluids 2020 (25 agosto 2020): 1–10. http://dx.doi.org/10.1155/2020/8837897.
Testo completoZhang, Zhenjie, Tianyi Zhao e Qingbang Meng. "A Novel Model of Counter-Current Imbibition in Interacting Capillaries with Different Size Distribution". Energies 15, n. 17 (29 agosto 2022): 6309. http://dx.doi.org/10.3390/en15176309.
Testo completoTesi sul tema "Imbibition"
Pashayev, Orkhan H. "Imbibition assisted oil recovery". Texas A&M University, 2004. http://hdl.handle.net/1969.1/1107.
Testo completoOdier, Céleste. "Imbibition forcée en milieu poreux". Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEN056/document.
Testo completoUnderstanding two-phase flow in heterogeneous media is of great importance for a number of industrial processes. One of the most prominent examples is enhanced oil recovery which has driven fundamental and applied research in this fieldfor decades. However our understanding has remained extremely unbalanced. The case of spontaneous imbibition of a fluid in a porous medium is fairly well understood,whereas quantitative descriptions of forced imbibition in the presence of anunfavorable viscosity ratio is still lacking. Combining large-scale observations and confocal imaging of microfluidic experiments, we studied the morphology and dynamicsof forced imbibition in homogeneous porous media. We identify four classesof three-dimensional patterns resulting from different dynamics at the pore-scale, and having a clear signature on the macroscopic observables. By means of confocalmicroscopy allowing us to visualize three dimensional features of the local dynamics,we show that the transitions between the four imbibition scenarios result from two dynamical wetting transitions and one interfacial instability. In addition,unlike previous studies, we investigate the evolution of those patterns undercontinuous injection over long time scales. We evidence their aging according to acapillary-coarsening process
Debacker, Alban. "Imbibition et dispersion d'un agrégat sous écoulement". Thesis, Strasbourg, 2015. http://www.theses.fr/2015STRAE036/document.
Testo completoThe GOAL of my PhD is to study the fundamental mechanisms of mixing a powder with a liquid. The mix of focus proceeds as follows:At start, as the powder and the liquid are filled in the mixer, powder aggregates form.Then each powder aggregate evolves under the influence of several phenomena: imbibition, spontaneous phenomenon corresponding to the infiltration of a liquid inside a porous medium by capillarity; and the forced phenomenon of rupture under flow. At last the powder is finely and homogeneously dispersed in the liquid. My PhD is thus organized in two parts: the study of the imbibitions kinetics of a spherical aggregate, and the study of the rupture of an aggregate under flow.The SUCCESS of the study relies on the thorough experiments: from creating a new aggregate manufacturing process using 3D printing, to determining empirical laws corresponding to new phenomena
Liberman, Tom. "Capillarity and liquid imbibition in granular solids". Thesis, McGill University, 1989. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=59594.
Testo completoTwenty-four sets of imbibition data were obtained. The meniscus height-time data were correlated by a modified form of the Washburn equation, called the GW model. It provided excellent correlation of all experimental imbibition data with a minimum R$ sp2$ of 0.981. The best value of the adjustable parameter in the GW model, $ beta$, was 0.93, with a standard deviation of 0.36. Although some literature sources suggest values of $ beta$ of 3 to 6 on theoretical grounds, the value of 0.93 fits literature imbibition data.
Behbahani, Hassan Shokrollah-Zadeh. "Analysis, scaling and simulation of counter-current imbibition". Thesis, Imperial College London, 2004. http://hdl.handle.net/10044/1/11474.
Testo completoRoychaudhuri, Basabdatta. "Spontaneous Countercurrent and Forced Imbibition in Gas Shales". Thesis, University of Southern California, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10635652.
Testo completoIn this study, imbibition experiments are used to explain the significant fluid loss, often more than 70%, of injected water during well stimulation and flowback in the context of natural gas production from shale formations. Samples from a 180 ft. long section of a vertical well were studied via spontaneous and forced imbibition experiments, at lab-scale, on small samples with characteristic dimensions of a few cm; in order to quantify the water imbibed by the complex multi-porosity shale system. The imbibition process is, typically, characterized by a distinct transition from an initial linear rate (vs. square root of time) to a much slower imbibition rate at later times. These observations along with contact angle measurements provide an insight into the wettability characteristics of the shale surface. Using these observations, together with an assumed geometry of the fracture system, has made it possible to estimate the distance travelled by the injected water into the formation at field scale.
Shale characterization experiments including permeability measurements, total organic carbon (TOC) analysis, pore size distribution (PSD) and contact angle measurements were also performed and were combined with XRD measurements in order to better understand the mass transfer properties of shale. The experimental permeabilities measured in the direction along the bedding plane (10 –1–10–2 mD) and in the vertical direction (~10–4 mD) are orders of magnitude higher than the matrix permeabilities of these shale sample (10–5 to 10 –8 mD). This implies that the fastest flow in a formation is likely to occur in the horizontal direction, and indicates that the flow of fluids through the formation occurs predominantly through the fracture and micro-fracture network, and hence that these are the main conduits for gas recovery. The permeability differences among samples from various depths can be attributed to different organic matter content and mineralogical characteristics, likely attributed to varying depositional environments. The study of these properties can help ascertain the ideal depth for well placement and perforation.
Forced imbibition experiments have been carried out to better understand the phenomena that take place during well stimulation under realistic reservoir conditions. Imbibition experiments have been performed with real and simulated frac fluids, including deionized (DI) water, to establish a baseline, in order to study the impact on imbibition rates resulting from the presence of ions/additives in the imbibing fluid. Ion interactions with shales are studied using ion chromatography (IC) to ascertain their effect on imbibition induced porosity and permeability change of the samples. It has been found that divalent cations such as calcium and anions such as sulfates (for concentrations in excess of 600 ppm) can significantly reduce the permeability of the samples. It is concluded, therefore, that their presence in stimulating fluids can affect the capillarity and fluid flow after stimulation. We have also studied the impact of using fluoro-surfactant additives during spontaneous and forced imbibition experiments. A number of these additives have been shown to increase the measured contact angles of the shale samples and the fluid recovery from them, thus making them an ideal candidate for additives to use. Their interactions with the shale are further characterized using the Dynamic Light Scattering (DLS) technique in order to measure their hydrodynamic radius to compare it with the pore size of the shale sample.
Oko, Asaf. "Spontaneous imbibition and colloidal aspects of inkjet printing". Doctoral thesis, KTH, Yt- och korrosionsvetenskap, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-152904.
Testo completoQC 20141002
Huapaya, Lopez Christian A. "The imbibition process of waterflooding in naturally fractured reservoirs". Texas A&M University, 2003. http://hdl.handle.net/1969.1/1632.
Testo completoNguyen, Viet Hoai Petroleum Engineering Faculty of Engineering UNSW. "A dynamic network model for imbibition and film flow". Awarded by:University of New South Wales. Petroleum Engineering, 2006. http://handle.unsw.edu.au/1959.4/25495.
Testo completoTong, Zhengxin. "Oil recovery by spontaneous imbibition from mixed-wet rocks". Laramie, Wyo. : University of Wyoming, 2005. http://proquest.umi.com/pqdweb?did=888851021&sid=2&Fmt=2&clientId=18949&RQT=309&VName=PQD.
Testo completoLibri sul tema "Imbibition"
Genosko, Gary. Drinking Animals: Sobriety, Intoxication and Interspecies Assemblages. Edinburgh University Press, 2018. http://dx.doi.org/10.3366/edinburgh/9781474422734.003.0016.
Testo completoEsenam, Etekamba Udo. Properties of electrodeposition paints related to some resin parameters: Changes caused by altering acid valuesand molecular weights of resins in electrophoresis and endosmosis during deposition, and ionic permeability and imbibition in service, of anti-corrosive formulations. Bradford, 1985.
Cerca il testo completoCapitoli di libri sul tema "Imbibition"
Gooch, Jan W. "Imbibition". In Encyclopedic Dictionary of Polymers, 382. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_6212.
Testo completoChesworth, Ward, Augusto Perez‐Alberti, Emmanuelle Arnaud e H. J. Morel‐Seytoux. "Imbibition". In Encyclopedia of Soil Science, 339–50. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-3995-9_286.
Testo completoGooch, Jan W. "Water Imbibition". In Encyclopedic Dictionary of Polymers, 805. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_12706.
Testo completoRodríguez, Humberto Gonzaález, Ratikanta Maiti e Ch Aruna Kumari. "Imbibition of Seeds". In Experimental Ecophysiology and Biochemistry of Trees and Shrubs, 69–74. Includes bibliographical references and index.: Apple Academic Press, 2020. http://dx.doi.org/10.1201/9780429322266-11.
Testo completoBewley, J. Derek, e Michael Black. "Storage, Imbibition, and Germination". In Seeds, 89–134. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4615-1747-4_3.
Testo completoZhao, Benzhong, Chris MacMinn e Ruben Juanes. "Strong Imbibition in Patterned Microfluidics". In Album of Porous Media, 54. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-23800-0_40.
Testo completoGutterman, Yitzchak. "Environmental Factors During Seed Imbibition Affecting Germination". In Seed Germination in Desert Plants, 169–206. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-75698-6_5.
Testo completoPeters, Ralph R., Elmer A. Klavetter, James T. George e John H. Gauthier. "Measuring and Modeling Water Imbibition into Tuff". In Flow and Transport through Unsaturated Fractured Rock, 75–85. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm042p0075.
Testo completoGuo, De-long, Hai Lin, You-yu Wan, Zhi-sheng Wang, Li Zhang, Feng-yu Lei, En-dong Zhao, Qian Xiao e Xing-yu Qiao. "Study on Imbibition Mode of Reservoir Fracturing". In Springer Series in Geomechanics and Geoengineering, 2135–45. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1964-2_182.
Testo completoLiu, Qian, Baoshan Guan, Yuting Liu e Li Liang. "Preparation and Performance Evaluation of Imbibition-Displacement Microemulsion". In Springer Series in Geomechanics and Geoengineering, 522–32. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0761-5_51.
Testo completoAtti di convegni sul tema "Imbibition"
Dubé, M. "Interface dynamics in imbibition". In Third tohwa university international conference on statistical physics. AIP, 2000. http://dx.doi.org/10.1063/1.1291616.
Testo completoTao, Liang, Yuhang Zhao, Xiaozhuo Zhang, Yanxing Wang, Hongbo Feng, Yujie Cao e Zhihong Zhao. "Experimental Study on Water Imbibition Law of Longmaxi Formation Shale in the Sichuan Basin". In International Petroleum Technology Conference. IPTC, 2021. http://dx.doi.org/10.2523/iptc-21819-ms.
Testo completoTian, Weibing Tian, Keliu Wu, Zhangxin Chen, Yanling Gao, Yin Gao e Jing Li. "Inertial Effect on Spontaneous Oil-Water Imbibition by Molecular Kinetic Theory". In SPE Europec featured at 82nd EAGE Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/205171-ms.
Testo completoSchembre, J. M., S. Akin, L. M. Castanier e A. R. Kovscek. "Spontaneous Water Imbibition into Diatomite". In SPE Western Regional Meeting. Society of Petroleum Engineers, 1998. http://dx.doi.org/10.2118/46211-ms.
Testo completoHayashi, J. A., e C. Perez-Rosales. "Visual Investigation of Imbibition Processes". In SPE Latin America Petroleum Engineering Conference. Society of Petroleum Engineers, 1992. http://dx.doi.org/10.2118/23745-ms.
Testo completoCruz-Hernandez, J., e C. Perez-Rosales. "Imbibition as a Dispersion Process". In SPE Latin America Petroleum Engineering Conference. Society of Petroleum Engineers, 1992. http://dx.doi.org/10.2118/23748-ms.
Testo completoAdams, Stephen. "Modeling Imbibition Capillary Pressure Curves". In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2003. http://dx.doi.org/10.2118/84298-ms.
Testo completoOlafuyi, Olalekan Adisa, Yildiray Cinar, Mark Alexander Knackstedt e Wolf Val Pinczewski. "Spontaneous Imbibition in Small Cores". In Asia Pacific Oil and Gas Conference and Exhibition. Society of Petroleum Engineers, 2007. http://dx.doi.org/10.2118/109724-ms.
Testo completoFøyen, T. L., M. A. Fernø e B. Brattekås. "The Onset of Spontaneous Imbibition: How Irregular Fronts Influence Imbibition Rate and Scaling Groups". In SPE Improved Oil Recovery Conference. Society of Petroleum Engineers, 2018. http://dx.doi.org/10.2118/190311-ms.
Testo completoZhou, Chao, Yashu Chen, Zuqing He, Zhifa Wang, Wei Zhang e Yuzhu Xu. "Experimental Research of Imbibition Law in the Continental Shale in Sichuan Basin in China". In International Petroleum Technology Conference. IPTC, 2024. http://dx.doi.org/10.2523/iptc-23286-ms.
Testo completoRapporti di organizzazioni sul tema "Imbibition"
Kuhlman, Kristopher, Forest Good, Tara LaForce e Jason Heath. FY22 Progress on Imbibition Testing in Containment Science. Office of Scientific and Technical Information (OSTI), settembre 2022. http://dx.doi.org/10.2172/1889335.
Testo completoKovscek, Anthony R., e Josephina Schembre. Spontaneous Imbibition in Low Permeability Medium, SUPRI TR-114. Office of Scientific and Technical Information (OSTI), agosto 1999. http://dx.doi.org/10.2172/9325.
Testo completoKuhlman, Kristopher, Melissa Mills, Jason Heath, Matthew Paul, Jennifer Wilson e John Bower. Spontaneous Imbibition Tests and Parameter Estimation in Volcanic Tuff. Office of Scientific and Technical Information (OSTI), agosto 2021. http://dx.doi.org/10.2172/1815348.
Testo completoHadghighi, M., e Y. C. Yortsos. Visualization and simulation of immiscible displacement in fractured systems using micromodels: Imbibition. Office of Scientific and Technical Information (OSTI), luglio 1995. http://dx.doi.org/10.2172/85906.
Testo completoDaily, W., e A. Ramirez. An experiment to determine drilling water imbibition by in situ densely welded tuff. Office of Scientific and Technical Information (OSTI), aprile 1987. http://dx.doi.org/10.2172/60501.
Testo completoKvoscek, A. R., D. Zhou, L. Jia e J. Kamath. Scaling of Counter-Current Imbibition Process in Low-Permeability Porous Media, TR-121. Office of Scientific and Technical Information (OSTI), gennaio 2001. http://dx.doi.org/10.2172/773294.
Testo completoChekuri, V. S., S. W. Tyler e J. W. Fordham. The role of fracture coatings on water imbibition into unsaturated tuff from Yucca Mountain. Office of Scientific and Technical Information (OSTI), novembre 1995. http://dx.doi.org/10.2172/399668.
Testo completoNorman R. Morrow e Jill Buckley. Wettability and Oil Recovery by Imbibition and Viscous Displacement from Fractured and Heterogeneous Carbonates. Office of Scientific and Technical Information (OSTI), aprile 2006. http://dx.doi.org/10.2172/888663.
Testo completoRangel-German, E. R., e A. R. Kovscek. Experimental and Analytical Study of Multidimensional Imbibition in Fractured Porous Media, SUPRI TR-129. Office of Scientific and Technical Information (OSTI), aprile 2002. http://dx.doi.org/10.2172/793652.
Testo completoWeiss. PR-318-08700-R01 Smart Gas-Using Chemicals to Improve Gas Deliverability-Phase II. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), marzo 2009. http://dx.doi.org/10.55274/r0010944.
Testo completo