Tesi sul tema "Imagerie confocale cellules vivantes"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-32 saggi (tesi di laurea o di dottorato) per l'attività di ricerca sul tema "Imagerie confocale cellules vivantes".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi le tesi di molte aree scientifiche e compila una bibliografia corretta.
VILLA, ANNA MARIA. "Microscopie confocale par fluorescence de cellules vivantes". Paris 6, 1998. http://www.theses.fr/1998PA066361.
Testo completoBlaising, Julie Élisabeth Françoise. "Étude des mécanismes moléculaires des inhibiteurs de l'entrée du virus de l'hépatite C (HCV) Silibinine et Arbidol : microenvironnement hépatique et infection par le HCV". Thesis, Lyon 1, 2013. http://www.theses.fr/2013LYO10235.
Testo completoHepatitis C virus (HCV) is a global health concern infecting 170 million people worldwide. New antivirals recently received the approval for the treatment against HCV infection but they display many side effects. Research for new therapeutic targets therefore remains an important topic. My main work was to develop approaches in biochemistry and live cell imaging to study the molecular mechanisms of action of antivirals silibinin (SbN) and arbidol (ARB) on HCV infection. We show that SbN and ARB alter clathrin-mediated endocytosis. Viral particles are trapped in clathrin-positive structures and cannot be delivered to the early endosomal compartment, thereby preventing infection. SbN and ARB also prevent cell infection by viruses that enter through clathrin-mediated endocytosis, which could explain their broad spectrum activity. I also contribute to a project initiated for a few months in the lab. We hypothsized that a molecule present in the immediate surrouding of the hepatocyte microenvironment could play a role in HCV infection. We focused on the syndecan-1 (SDC1) because it is essentially anchored on the surface of hepatocytes. We show that SDC1 depletion leads to a drastic decrease of the viral infectivity. SDC1 colocalizes on the unfected hepatocyte surface with the already identified HCV recptor CD81. This colocalization vanished within days in infected cells. These data suggest that SDC1 could act as a cellular co-factor for HCV entry, in combination with CD81; thus infection could reorganized molecules of the hepatocyte microenvironment and contribute to HCV hepatotropism and the peristence of infection
Bayard, Anaïs. "Study of the Physiological Response of NucS to Genotoxic Stress in Actinobacteria". Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAX063.
Testo completoDNA replication accuracy ensures proper genetic transmission. Damage from external factors or internal events threatens genomic integrity. Actinobacteria, lacking canonical MMR proteins, possess NucS (EndoMS), an ATP-independent enzyme involved in a non-canonical mismatch repair pathway. While NucS's activity on mismatches is documented, its in vivo role and implications in DNA Damage Repair systems require further understanding.This study aims to characterise NucS's role in Double-Strand Break Repair (DSBR). Our findings show that mScarlet1-NucSD144A forms polar foci in response to DNA damage, especially DSBs and complex recruitment in apoptosis-like cells.Corynebacterium glutamicum, CglΔnucS bacteria exhibits higher homologous recombination (HR) activation and increased DSBs compared to CglWT, indicating NucS's role in DSBR efficiency and regulation. CglΔnucS bacteria have a growth advantage under genotoxic stress, likely due to altered DSBR mechanisms. Bioinformatic analyses predict NucS interactions with key enzymes of RH and other DNA repair pathways and metabolism and energy regulation.NucS may bind and stabilise free DNA ends generated by DSBs, balancing HR and participating in DSB repair through microhomology-mediated end joining (MMEJ). Future studies should explore post-translational modifications and metabolic conditions regulating NucS reponse and its in vitro activity on DSBs and HR intermediates
Salehi, Hamideh. "L'étude des cellules vivantes et la dentine humaine par microscopie confocale Raman". Thesis, Montpellier 1, 2013. http://www.theses.fr/2013MON12201/document.
Testo completo"The Study of living cells and human dentin by confocal Raman microscopy"Confocal Raman microscopy is employed to trace drugs and nanoparticles intracellular and in hard tissues. Raman spectroscopy a non-invasive, label-free and high spatial resolution imaging technique in first part of the study is being used to trace the anticancer drug paclitaxel in living Michigan Cancer Foundation-7 (MCF-7) cells. An analytical method was developed and applied to Raman data acquired. The Raman images were treated by K-mean cluster analysis to detect the drug in cells. Distribution of paclitaxel in cells is verified by calculating the Pearson correlation coefficient between the reference spectrum of the drug and the whole Raman image spectra. A time dependent gradual diffusion of paclitaxel all over the cell is observed suggesting a complementary picture of the pharmaceutical action of this drug based on rapid binding of free tubulin to crystallized paclitaxel. The apoptosis in the cells were followed by post-measurement analysis including K-mean clustering and Pearson correlation coefficient. K-mean clustering was used to determine mitochondria position in cells and cytochrome c distribution inside the cells was based on correlation analysis. Cell apoptosis is defined as cytochrome c diffusion in cytoplasm. Cytochrome c acts as a trigger for the activation of the caspase cascade, and its release from mitochondria is a sign of apoptosis. Co-localization of cytochrome c is done after cell incubation with different concentration of paclitaxel. The other product used was titanium dioxide. Titanium has been widely used for orthopedic and dental implant materials. When biomaterial is implanted into the human body, it is unavoidable that blood will contact the implant surface and nanoparticles. The question is: do these nanoparticles cause toxicity? Titanium dioxide nanoparticles were followed intracellular in MCF-7 cells and TERT epithelial human oral keratinocyte cell line (OKF6/TERT-2). Detection of nanoparticles and their toxicity were studied using two analytical methods. Confocal Raman microscopy were also used to obtain Structural analysis and chemical profile of Enamel – Dentine- Resin and Raman map of decay and sound dentin samples, through accurate analysis of the mineral and organic components. The Raman spectroscopy combined with this novel method developed in this study, will provide accurate finger prints of chemical composition and by post-measurement analysis of the data acquired more information would be obtained, which might open new gates in pharmaceutical and dentistry researches
Proag, Amsha. "Sensibilité de cellules vivantes aux propriétés mécaniques et géométriques de leur environnement". Paris 7, 2012. http://www.theses.fr/2012PA077056.
Testo completoAnimal tissues constitute highly organized biological Systems, where the cellular and rmulticellular levels are in constant interrelation. Not only do cells regulate their behaviour via biochemical signalling: they also transmit mechanical stimuli, through the cytoskeleton and adhesion complexes, which leads to the formation of a tridimensional collective organization where cells and tissues constrain each other. To investigate the mechanical and geometrical aspects of intercellular interactions, we cultivated epithelial tissues on artificial micro-environments. We manufactured polyacrylamide and polydimethylsiloxane microstructured substrates with precise stiffness and geometry, which we grew MDCK epithelia on. We also modulated the adhesive properties of these substrates in order to confine a single cell and simulate the topological constraints of the tissue on an individual cell. After staining the internal components which govern cell architecture, we were able to obtain 3D images using confocal microscopy and to quantify the morphology of the cells. The measured volume distributions of cells and nuclei differed according to their localization within the tissue, as well as to the geometry and stiffness of the environment. Modifying these experimental parameters made it possible to observe the effect of external constraints on cell morphology. Finally, we found that the tissue profile depended on the topography of the substrate, and we suggested a mode! which correlates both organizational levels
D'Augustin, de Bourguisson Ostiane. "Caractérisation de la dynamique de l'ADN-glycosylase OGG1 et de résidus responsables de son interaction avec l'ADN en cellules vivantes". Electronic Thesis or Diss., Rennes 1, 2022. http://www.theses.fr/2022REN1B060.
Testo completoDNA is constantly subjected to various stress, threatening its integrity, and consequently, the proper functioning of the cell. In order to preserve the genomic integrity, the cell can activate a large set of repair pathways. One of the most common genomic alteration is the base modification 8-oxoguanine (8-oxoG), an oxidized form of guanine. It is highly mutagenic, due to its tendency to pair with adenine instead of cytosine during replication. Thus, it needs to be detected and repaired on time to avoid G:C to T:A transversions. 8-oxoG paired with cytosine is recognized and excised by the 8-oxoguanine DNA-glycosylase (OGG1), which initiates the base excision repair pathway. Although OGG1 has been widely studied in vitro and many structural data are available, many questions remain concerning the dynamics of the protein within the cell nucleus. Hence, the goal of my PhD project was to characterize the dynamics of OGG1 searching for 8-oxoG and get new insights about the residues or functions of OGG1 that regulate these dynamics. I was able to show that the interaction between OGG1 and DNA is crucial for the efficient search of 8-oxoG, and that mutating the residues involved in such interaction impairs OGG1 dynamics and its ability to detect and excise 8-oxoG. Similarly, 8-oxoG detection, but also that of the facing cytosine, both play an important role in the function of the DNA-glycosylase and in its ability to accumulate at the sites of damage. Finally, the NNN motif, which is highly conserved but very poorly characterized, seems to be essential to the specific association with 8-oxoG, but not for the nuclear exploration by OGG1
Grégoire, Antoine. "Design et étude d'un dispositif holographique monolithique, compact et portatif pour l'imagerie de cellules vivantes". Master's thesis, Université Laval, 2019. http://hdl.handle.net/20.500.11794/37883.
Testo completoompact off-axis holographic lensless microscope capable of non-invasively imaging weakly scattering biological samples for on the field applications is designed. The technique allows to reconstruct both the phase and intensity of a sample-diffracted wavefront. The dimensioning of the proposed device depends on both the illumination shining the sample and the physical constraint associated with acquisition device. Hence, FDTD simulations are used in order to ascertain the smallest usable scattered field. Using proper propagation methods, the diffracted field is used to generate a numerical hologram emulating the sensor’s sampling rate. Such hologram is then numerically reconstructed in order to retrieve the object and compare it with the former. For instance, a 5 mm diameter bead diffraction field is obtained via FDTD simulation. As it is magnified by a factor Gy = 20, its reconstruction retrieves a magnified bead of 107.22 mm in diameter. The proposed pipeline thus paves the way for the study of modelled biological sample usable scattered field for holographic applications. Moreover, the proposed compact lensless device using an optical fiber coupler attains an off-axis visibility of V = 0:8435 as this last is limited by coherent noise. The study of the microscope attainable magnification and resolution shows that it is limited by the sampling rate of the used acquistion device, and that is, albeit zero-padding interpolation could provide smaller than a pixel size detail resolution for DFFT propagation. Lastly, the designed device is capable of quantitative phase imaging. The reconstructed thickness of a glass phase target (n = 1:52) is of d = 149±23 nm which is in good agreement with the expected value of 150 nm.
Perret, Stéphanie. "Imagerie confocale du signal calcique dans un modèle de cellules non-excitables de la prostate humaine". Bordeaux 2, 1999. http://www.theses.fr/1999BOR28659.
Testo completoTramier, Marc. "Imagerie des déclins de fluorescence pour l'étude de la dynamique et des interactions de macromolécules en cellules vivantes". Phd thesis, Université Pierre et Marie Curie - Paris VI, 2001. http://tel.archives-ouvertes.fr/tel-00003477.
Testo completoTramier, Marc. "Imagerie des declins de fluorescence pour l'etude de la dynamique et des interactions de macromolecules en cellules vivantes". Paris 6, 2001. http://www.theses.fr/2001PA066377.
Testo completoTRAMIER, MARC COPPEY MOISAN MAITE. "IMAGERIE DES DECLINS DE FLUORESCENCE POUR L'ETUDE DE LA DYNAMIQUE ET DES INTERACTIONS DE MACROMOLECULES EN CELLULES VIVANTES /". [S.l.] : [s.n.], 2001. http://www.univ-lille1.fr/bustl-grisemine/pdf/extheses/50416-2001-Tranier.pdf.
Testo completoZiegler, Cornelia. "Imagerie quantitative de l'assemblage de la NADPH oxydase des phagocytes en cellules vivantes par des approches FRET-FLIM". Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS048/document.
Testo completoThe phagocyte NADPH oxidase (NOX2) is a key enzyme of the immune system generating superoxide anions, which are precursors for other reactive oxygen species. Any dysfunctions of NOX2 are associated with a plethora of diseases and thus detailed knowledge about its regulation is needed. This oxidase is composed of five subunits, the membrane-bound gp91phox and p22phox and the cytosolic p47phox, p67phox, and p40phox. The latter are assumed to be in a ternary complex that translocates together with the small GTPase Rac to the membranous subunits during activation.Our aim was to discover and to characterize specific interactions of the cytosolic subunits of NOX2 in live cells using a Förster Resonance Energy Transfer (FRET) based approach: Since FRET depends on the distance between two fluorophores, it can be used to reveal protein-protein interactions non-invasively by studying fluorescent protein tagged subunits. To have a rapid method on hand to reveal specific interactions, a flow cytometer based FRET approach was developed. For more detailed studies, FRET was measured by fluorescence lifetime imaging microscopy (FLIM), because it allows a direct determination of the apparent and molecular FRET efficiency, which contains both qualitative and quantitative information about the interaction and the structure of the interacting proteins. Furthermore, the FRET-FLIM approach enables an estimation of the fraction of bound donor. This information itself is important for a better understanding of the organisation and regulation of the NOX2, but it is also necessary for the calculation of the dissociation constant Kd from the FRET-FLIM data. To confirm the findings obtained by FRET-FLIM fluorescence cross correlation spectroscopy (FCCS) experiments were performed. This completely independent method is not based on distances like FRET but on the observation of the co diffusion of the fluorescently labelled samples when they move across a small observation volume inside the cells.The FRET-FLIM approach allowed us in a first step to discover heterodimeric interactions between all cytosolic subunits in live cells. Due to the good precision of the results, we were able to extract structural information about the interactions and to compare them with available structural data obtained from in vitro studies. The information from FRET-FLIM was coherent with in vitro data. We then aligned the available structures leading to the first 3D model of the cytosolic complex of the NADPH oxidase in the resting state in live cells.Additionally, the bound fraction for all heterodimeric interactions derived by FRET-FLIM is around 20 %, which is in contrast to the general belief that all cytosolic subunits are bound in complex. The first FCCS results support our findings. Therefore, we believe that the complexation of the cytosolic subunits could be involved in the regulation of the NADPH oxidase and should be investigated further. The estimated Kd derived from the FRET-FLIM approach is in the low micomolar range, which is an order of a magnitude higher than the nanomolar range of in vitro studies.In conclusion, we showed that our quantitative FRET-FLIM approach is not only able to distinguish between specific and unspecific protein-protein interactions, but gives also information about the structural organisation of the interacting proteins. The high precision of the FRET-FLIM data allow the determination of the bound fraction and an estimation of the Kd in live cells. FCCS is a complementary method, which can verify these quantitative findings. However, it cannot replace FRET-FLIM completely as it does not give any structural information.With respect to the biological outcome of this project, we can propose for the first time a 3D-model of the cytosolic complex of the NADPH oxidase covering the in vitro as well as the live cell situation. Additionally, the small bound fraction found here may raise new ideas on the regulation of this vital enzyme
Lombard, Alain. "QuanTI-FRET, un outil d'imagerie pour l'analyse de la mécanotransduction dans les cellules vivantes uniques". Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALY055.
Testo completoMany elementary cellular processes (migration, differentiation, death) are controled by a set of agents linked together by cascade reactions. Some of these signaling networks convert mechanical signals external to the cell into internal biochemical signals, a process called mechanotransduction. We seek to study these networks through a signal processing approach, in order to experimentally determine an analogous of the transfer function in time and space for mechanotransduction.Controlling the input variable is done by different type of 2D substrates which have been developped, from the simple glass surface, the adherent geometrical patterns, to the magneto-active substrates (composed of micro-pillars inserted into an elastomer) capable of stimulating locally and dynamically the cells.Measuring the biochemical output variable is done by FRET biosensors. The fluorescence emitted is collected through an inverted widefield fluorescence microscope. We set up the quantitative FRET efficiency calculus from this fluorescence without using FRET standards. It gives access to the activity in space and time of some molecules of network signalisation.Some tools are finally presented as potential candidates to perform the transfer function, among them are combination of correlation methods, and singular value decomposition used in acousto-optics. Combiantion of these tools and methods remains complex, particularly to highlight a biological behaviour from a quantitative quantity. The first use of these tools do not give any biological result, but are promising to study mechanotransduction
Filipe, Cédric. "Etude de l'effet de l'oestradiol sur la réendothélialisation". Toulouse 3, 2007. http://thesesups.ups-tlse.fr/163/.
Testo completoAlthough 17ß-estradiol (E2) accelerates reendothelialization through estrogen receptor alpha (ER-alpha), the molecular and cellular mechanisms underlying this effect are poorly understood. We employed "en face" confocal microscopy (EFCM) to visualize the endothelial regeneration in the conventional endovascular and in a perivascular electric injury model. Healing kinetics and E2 effects were similar in both models. Endothelial cell migration preceded cell proliferation (BrdU-positive cells) and E2 anticipated both processes. EFCM analyses demonstrated the involvement of an adjacent uninjured endothelial zone, which was enlarged by E2, as was the reendothelialized area. Chimeric mice deficient in ER-alpha either in the bone marrow (BM) or in the non-BM compartment revealed an abolition of the E2 effect on reendothelialization as well as on cell proliferation. In mutant mice expressing the 46kD ER-alpha isoform, that is lacking the N-terminal A/B region, E2 accelerated reendothelialization as in wild type mice, providing the first in vivo observation of an E2 effect dependent of ER-alpha that does not require activation function 1. Thus, the acceleration of reendothelialization by E2 relies on the enlargement of the retrograde commitment of endothelial cells to migrate and proliferate, a cooperative effect between BM and non-BM ER-alpha, whereas the A/B region of ER-alpha is dispensable
Audugé, Nicolas. "Imagerie à haute résolution spatio-temporelle de la dynamique chromatinienne en cellules vivantes : étude de l'interaction entre le bromodomaine et l'histone H4 acétylée". Paris 7, 2009. http://www.theses.fr/2009PA077248.
Testo completoFluorescence microscopy is rapidly evolving and the development of novel techniques offers new prospects in thé study of the cellular processes. The possibility of following protein interactions in real-time and in living cells leads to a more dynamic vision of the molecular mechanisms occurring throughout the life of a cell. The purpose of my thesis was to study the interaction between the acetylated histone H4 and the double bromodomain of protein TAFII250. This interaction was analyzed by a technique of fluorescence microscopy, FLIM by FRET, developed within the laboratory and making possible to obtain in real-time, with a high space and time resolution, a follow-up of the interaction in living cells. This interaction, dependent on the histone H4 acetylation rate, seems to be very dynamic and to be carried out in a very localized way on the chromatin, on the domains of 0,7}in of diameter. Similarly, the analysis of the fluorescence of the protein EGFP-H4 reveals fluctuations of the fluorescence lifetime of this fluorophore. Further analyses strongly argue that these fluctuations are due to the variations of the microenvironment of the EGFP and thus reflecting the variations of the supra-nucleosomal state of chromatin. Also, we show that the interaction between the double bromodomain of TAFII250 and the histone H4 is driven by these fluctuations of the supra-nucleosomal state. In a more general way, we propose that these fluctuations would modulate the accessibility of chromatin to the protein factors
Vassilopoulos, Stéphane. "Caractérisation et rôle des isoformes de la triadine dans la physiologie des cellules musculaires". Université Joseph Fourier (Grenoble), 2006. http://www.theses.fr/2006GRE10289.
Testo completoLn the present study, I searched for the role of the different triadin isoforms Trisk 95, Trisk 51, Trisk 49 and Trisk 32. First, I studied the role of Trisk 95 and Trisk 51. I induced their over-expression with viral vectors in primary cultures or in new-born mice. Both isoforms are associated to RyR1. Over-expression of Trisk 95 can block the depolarisation induced Ca2+ release in primary myotube cultures, while in the same conditions, Trisk 51 overexpression had no effect. Trisk 95 over-expression also decreases store operated-calcium entry, a process that allows ce Ils to replenish depleted stores with extracellular Ca2+. Triadin long-term over-expression by adenovirus injections of Trisk 95 and Trisk 51 in newborn mice was also studied. Their over-expression only slightly affected the expression of proteins involved in the calcium release complex. However, their overexpression affected the localization of caveolin-3, a structural protein involved in triad formation. These results open new perspectives concerning the respective function of each isoform on Ca2+ release complexes and their targeting to triads. The second part of my work was to characterize the localization and the partners of Trisk 49 and Trisk 32. Using immunofluorescent labelling and confocal microscopy on longitudinal muscle sections, I showed that the two isoforms Trisk 49 and Trisk 32 are not localized at the triad, suggesting a specific function, distinct from the calcium release complex. Immunoprecipitation experiments showed that Trisk 32 is associated to RyR, but also to another type of intracellular Ca2+ release channels, inositol 1,4,5-tris-phosphate receptors (IP3R). Altogether, these results suggest that triadins could be involved in regulating different types of calcium release channels and that they cou Id participate in maintaining the structure of different SR compartments
Chouinard, Julie. "Effets des LDL natives et oxydées sur l'évolution des propriétés biomécaniques des cellules endothéliales et imagerie des LDL par microscope à force atomique". Mémoire, Université de Sherbrooke, 2007. http://savoirs.usherbrooke.ca/handle/11143/1351.
Testo completoLagardère, Matthieu. "Développement d’un Simulateur fondé sur la Dynamique Brownienne de molécules individuelles et dédié à l’Imagerie de Fluorescence sur Cellules Vivantes". Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0786.
Testo completoFluorescence has revolutionized cellular imaging: by deeply increasing contrast, it permits to image cellular structures, and to follow molecular dynamics, which were not achievable by other optical imaging methods. Nowadays, a great number of optical microscopy techniques use the properties of fluorescent dyes and proteins. They have allowed scientists to observe finer and finer structures, to study the dynamics of an ensemble of molecules (FRAP, PAF) or of individual particles (SPT, FCS) but also to investigate the interactions between molecules in live conditions (FCCS, FRET). However, these experimental paradigms are complex and numerous biases can introduce inaccuracy in the obtained results.To the aim of precisely interpreting live cell fluorescence imaging experiments, we have developed a simulation software which takes into account the characteristic parameters of these experiments. This software, which provides a graphical interface to adjust in real time the simulation parameters, utilizes Monte Carlo Methods to simulate the Brownian motion of single molecules and the photophysics of associated fluorophores. These molecules diffuse in a user-defined geometry and can transit between fast and slow diffusion (trapping state), depending on the cellular compartment. Fluorophores can be fluorescent, blinked or photobleached. Transition rates between these states are used to simulate the fluorescence experiments.We show that the simulations generated by the algorithm are in accordance with the theoretical results typically used to analyze fluorescence experiment outputs. Then, we use the software to study an artificial cell-cell junction made up with two COS cells overlapping with each other. This junction, called adhesive contact, is mediated by two adhesion proteins called neurexin and neuroligin which establish a heterologous complex. Fluorescence imaging experiments (SPT, FRAP, FCS) have been performed, and are interpreted using simulations generated by our software. In this study, we show that the dynamic properties of neurexin are modified in the cell-cell contact area in accordance with the model
Delorme, Richard. "Microscopie confocale et cytométrie tridimensionnelle : application à l'étude de la localisation de la cycline A et des CDK associées dans les cellules lymphoïdes". Lyon 1, 1997. http://www.theses.fr/1997LYO1T239.
Testo completoKozulic-Pirher, Alja. "La visualisation de la transcription en molécules unique révèle de nouvelles caractéristiques des promoteurs cellulaires et viraux". Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTT080.
Testo completoTranscription is a fundamental step in gene expression. However, it is incompletely characterized in single living cells. To address this question, our laboratory developed the improved RNA tagging system using MS2-binding protein that could easily be fused with the promoter of interest inserted in a single copy in HeLa cell lines. This construct allows quantitative, single molecule view of the transcription in a real time. We have found that HIV-1 is transcribed by groups of closely spaced polymerases referred as convoys. The transcription oscillates randomly between active (ON) and inactive (OFF) periods that are controlled independently.On the basis of this discovery, we further investigated: (i) how architecture of different mammalian promoters controls the transcriptional kinetics; and (ii) the role of transcriptional transactivator (Tat), the master regulator of in HIV-1 transcription in living cells. To address this, new pipeline for the quantification was established, combining the information of transcriptional fluctuations with different temporal resolutions. This gave the full and precise view of the stochastic switching, described by the Markov model. Five of six mammalian promoters could be defined by three states, probably controlled by different mechanisms. Switching between them is defined by the rate constants and the discrepancy among them could potentially explain the difference in the amount mRNA produced. Interestingly, we found that switching rates between inactive, deeply silent states are the hallmark of different promoters, suggesting that the crucial events defining the transcriptional profiles are in fact pre-transcriptional events.To address the role of Tat, cell lines containing HIV-1 reporter and different amounts of Tat were produced. With the above described approach, we found that Tat, previously characterized as dominant player in the release of the paused polymerase, actually acts long before the transcription is initiated. These striking results bring new insights of HIV-1 transcriptional dynamics controlled by Tat
Roszko, Isabelle. "Morphogenèse du système nerveux central : analyse par imagerie confocale et identification du rôle clé joué par la GTPase RhoA dans les divisions des progéniteurs neuraux chez le poulet". Paris 6, 2006. http://www.theses.fr/2006PA066316.
Testo completoChatron-Colliet, Aurore. "Réorganisation spatio-temporelle de l'architecture nucléaire de fibroblastes normaux et cellules de mélanome : effet du peptide (VGVAPG)3". Thesis, Reims, 2011. http://www.theses.fr/2011REIMM204/document.
Testo completoMelanoma is an aggressive cancer for which invasion is facilitated by degradation of the extracellular matrix, both by normal fibroplasts and tumor cells. This degradation generates elastin peptides, in particular responsible for the proliferation of normal and tumor cells. The elastin peptide (VGVAPG)3. accelerates recovery and progression in cell cycle of normal fibroblasts and melanoma cells previously synchronized (expression of pKi-67, S-phase detection and quantification of DNA). The nuclear architecture associated with the recovery of the synthesis of mRNA on the PML-NBs nuclear compartments and SC35 domains, inseparable partners of transcription and splicing, which are studied after immunostaining by confocal microscopy followed by 3D reconstruction. Compartments PML-NBs and SC35domains are reorganized according of the phases of the cell cycle and also the transcriptional activity, from SC35 sequestration in PML-NBs to an interpenetration of the two compartments. The quantitative analysis of these compartments consolidates the 3D architectural results. The peptide binds to the elastin receptor complex and induceds the activation of the MEK 1/2 ERK 1/2. An antagonist of the fixation (lactose) and inhibition of ERK 1/2 (UO126) lead to the abolition of effects due to the peptide for both the cell cycle and the organized of PML-NBs and SC35 domains, confirming the involvement of these pathways
Cantereau, Anne. "Étude, par imagerie confocale de fluorescence, de la dynamique spatio-temporelle du Ca2+ libre intracellulaire et de son évolution au cours de la différenciation des cellules musculaires squelettiques de rat in vitro". Bordeaux 2, 1997. http://www.theses.fr/1997BOR28493.
Testo completoDo, Le Duy. "Relation entre l’annexine A6 et la phospholipase D1 pendant le processus d’exocytose dans les cellules PC12". Thesis, Lyon 1, 2014. http://www.theses.fr/2014LYO10160/document.
Testo completoThe regulated exocytosis is a key process allowing cell-cell communication through the release of hormone and neurotransmitters. In neurons and neuroendocrine cells, it is strictly controlled by extracellular signal such as transmembrane potential and ligand bindings to receptors. Substantial progress has been made to understand the molecular mechanism of exocytosis. Major components of secretory machinery have been brought to light. Now the emergent question concerns the role of scaffolding proteins that are thought to coordinate the action of each other. In the case of annexin family well known to be involved in exocytosis, their modes of –sequential or concerted- interactions with other proteins, and their regulatory effects on exocytosis are not very well established. Previous findings indicated that Annexin A6 (AnxA6) affected calcium homeostasis and dopamine secretion from PC12 cells, used as cellular model of neurosecretion (Podszywalow-Bartnicka et al., 2010). To determine the inhibitory effect of AnxA6 on exocytosis of dopamine, we were looking for molecular partners of AnxA6 in PC12 cells. We hypothesized that AnxA6 interacts with phospholipase D1 (PLD1), an enzyme involved in the fusion step. By using confocal microscopy and total internal reflection fluorescence microscopy, we found that isoform 1 of AnxA6 and Phospholipase D1 are both recruited on the surface of vesicles upon stimulation of PC12 cells. AnxA6 inhibited phospholipase D activity as revealed by our enzymatic assay based on infrared spectroscopy. To conclude, we propose that AnxA6 is not only implicated in membrane organization by its capacity to bind to negative charged phospholipids and to cholesterol, but AnxA6 is also affecting PLD1 activity, changing membrane lipids composition
Freund, Guillaume. "Sélection et caractérisation d'anticorps et de fragments d'anticorps pour l'immunociblage intracellulaire". Thesis, Strasbourg, 2014. http://www.theses.fr/2014STRAJ005/document.
Testo completoTherapeutic antibodies are interesting molecules used to treat numerous pathologies such as cancer. Because of their size, their application is currently limited to the extracellular space. Indeed, antibodies cannot cross the cell membrane. Almost all therapeutic targets in cancer seem to be located inside cells, it would be beneficial to take advantage of antibodies in cells in order to neutralize the activity of these targets. The use of antibodies inside the cells is a real challenge, because of the cell membrane and the reducing environment of the cytoplasm. Several strategies of intracellular immunotargeting are presented in this thesis
Burke, Ryan. "Investigating the role of voltage-gated ion channels in pulsed electric field effects in excitable and non-excitable cell lines". Thesis, Limoges, 2017. http://www.theses.fr/2017LIMO0118/document.
Testo completoThe use of pulsed electric fields (PEF) in medical and biotechnology sectors has become increasingly prevalent over the last few decades. Research has shown that by adjusting the duration of the PEF we can predict what effects will be observed. Whereas PEF in the micro-to-millisecond range have been used to permeabilize the cell membrane and enhance drug or protein uptake, nanosecond PEF (nsPEF) have demonstrated unique effects on intracellular organelles. Both PEF and nsPEF have demonstrated therapeutic potential for a variety of human pathologies, including the treatment of cancer. Using live-cell imaging, this thesis investigated, in vitro, the effects of pulsed fields ranging in duration from 10 ns to 10 ms on cancerous (U87 glioblastoma multiforme) and non-cancerous cell lines (mouse hippocampal neurons (HT22) and Chinese hamster ovary (CHO) cells). Previously published results have demonstrated that cancerous cells have a greater sensitivity to applied electric fields than healthy cells do. Our results are in agreement with these findings, insofar as the U87 cells underwent a significantly greater depolarization of their transmembrane potential following a single electric pulse at all durations. In a parallel set of experiments, despite having similar electric field thresholds for membrane permeabilization, the U87 cells demonstrated significantly enhanced YO-PRO uptake compared to the other cells lines. Although U87 cells underwent the greatest change in both membrane depolarization and membrane permeabilization, they also showed the fastest membrane resealing constant, which was approximately 30 seconds faster than other cell lines. To elucidate some of the underlying mechanisms by which U87 cells respond to electric fields, a series of experiments looked at the role of transmembrane ion channels. Several recent studies have reported that PEFs can act directly on voltage-gated ion channels. Using a variety of specific and broad acting pharmacological ion channel modulators, we demonstrated that we could almost entirely inhibit the electric field-induced membrane depolarization in U87 cells by blocking certain cationic channels. These results were quite specific, such that the big conductance potassium (BK) channel, L- and T-type calcium channels, and the non-specific cationic channel, TRPM8, were able to inhibit depolarization while blocking other ion channels produced no significant change. The work in this thesis showed that the malignant U87 cell line showed a greater sensitivity to electric fields from ranging from 10 ns – 10 ms when compared to the non-cancerous cell lines that were investigated. Potential improvements to current treatment protocols have been proposed based on the findings presented herein
Conic, Sascha. "Analysis of transcription factor and histone modification dynamics in the nucleus of single living cells using a novel antibody-based imaging approach". Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAJ081.
Testo completoIn eukaryotic cells, gene transcription is controlled by a plethora of protein complexes. However, most of our basic knowledge about transcription regulation originate from biochemical experiments or immunofluorescence experiments using fixed cells. Consequently, many efforts have been devoted recently to obtain information about the dynamic movements or assembly of transcription factors directly from living cells. Therefore, we developed a labeling strategy, named versatile antibody-based imaging approach (VANIMA), in which fluorescently labeled antibodies are introduced into living cells to image specific endogenous proteins or posttranslational modifications. We were able to show that VANIMA can be used to study dynamical processes of fundamental biological mechanisms including factors of the transcription machinery as well as histone modifications in living human cancer cells using conventional or super-resolution microscopy. Hence, in the future VANIMA will serve as a valuable tool to uncover the dynamics of endogenous biological processes including transcription directly in single living cells
Carr, Lynn. "Determination of the signaling pathways and subcellular targets in response to nanosecond pulsed electric fields". Thesis, Limoges, 2016. http://www.theses.fr/2016LIMO0084/document.
Testo completoHigh powered, nanosecond duration pulsed electric fields (nsPEF) have been proposed as a minimal side-effect, electrical cancer therapy that is unlikely to result in tumour resistance. Glioblastoma multiforme (GBM) is an incurable brain cancer showing resistance to current treatments such as surgery, radiotherapy and chemotherapy. This thesis uses live-cell imaging to look in vitro at the effects of nsPEF on a human glioblastoma cell line (U87-MG) in a first step towards assessing its suitability as a novel treatment for GBM. In agreement with previously published results we show that U87-MG cells respond to nsPEF with plasma membrane poration, a rapid increase in intracellular calcium and a gradual loss of mitochondrial membrane potential. We present novel results showing that 100, 10 ns pulses delivered at 44 kV/cm disrupt microtubule growth dynamics in a way that is independent of calcium and swelling, both of which are known to cause microtubule depolymerisation. Super-resolution microscopy allowed us to visualise microtubules bending and breaking following nsPEF application suggesting a more direct effect of the pulse. We look also at the application of genetically encoded calcium indicators (GECIs) to nsPEF calcium studies making a comparison between GECIs and commonly used chemical indicators. Using the GECI GCaMP, we show the advantages of being able to express GECIs in specific subcellular locations by visualising an nsPEF induced calcium wave with a plasma membrane bound form of GCaMP. This event, which is not evident with classic cytosolic chemical indicators due to diffusion, helps confirm the extracellular origin of the post-nsPEF calcium spike. The work in this thesis demonstrates that nsPEF causes several major, and possibly destructive, cellular events when applied to U87-MG cells. The disruption of the microtubule network by nsPEF could potentially be exploited as a locally administered antimitotic, for GBM treatment, with reduced systemic side effects and lower occurrences of resistance
Woringer, Maxime. "Tools to analyze single-particle tracking data in mammalian cells". Electronic Thesis or Diss., Sorbonne université, 2019. http://www.theses.fr/2019SORUS419.
Testo completoThis work aims at providing tools to dissect the regulation of transcription in eukaryotic cells, with a focus on single-particle tracking of transcription factors in mammalian cells. The nucleus of an eukeryotic cell is an extremely complex medium, that contains a high concentration of macromolecules (DNA, RNA, proteins) and other small molecules (ATP, etc). How these molecules interact with transcription factors, and thus influence transcription rates is an area of intense investigations. Although some of these interactions can be captured by regular biochemistry, many of them, including weak, non-covalent interactions remain undetected by these methods. Live-cell imaging and single-particle tracking (SPT) techniques are increasingly used to characterize such effects. The inference of biophysical parameters of a given transcription factor (TF), such as its diffusion constant, the number of subpopulations or its residence time on DNA, are crucial to understanding how TF dynamics and transcription intertwine. Accurate and validated SPT analysis tools are needed. To be used by the community, SPT tools should not only be carefully validated, but also be easily accessible to non-programmers. They should also be designed to take into account known biases of the imaging techniques. In this work, we first propose a tool, accessible through a web interface, based on the modeling of the diffusion propagator. We validate it extensively and show that it exhibits state-of-the art performance. We apply this tool to two experimental settings: (1) the study of catalysis-enhanced diffusion in-vitro and (2) the analysis of the dynamics of the c-Myc transcription factor in mammalian cells
Rahmi, Gabriel. "Thérapie cellulaire en endoscopie interventionnelle digestive". Thesis, Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCB142.
Testo completoRecent developments in digestive interventional endoscopy lead us to manage two types of digestive disease. First, it is digestive fistulas associated in many cases with high morbi-mortality; and second is oesophageal stenosis after extended superficial endoscopic resection. In both situations, chronic inflammatory process resulted in delayed or no fistula healing for the first case or oesophageal stenosis due to fibrosis. Cellular therapy has proved to be successful in reducing the inflammatory process and to promote tissue healing. Tissue therapy with 3D construct stem cells represents a major advantage by allowing a direct adaptation on the right place. Our objective was to evaluate the therapeutic effect of new strategy to close the digestive fistula and to prevent oesophageal stenosis. First step was to evaluate the effect of labelled human bone marrow derived mesenchymal stem cells engraftment in the form of double cellsheet in a post-surgical fistula model in nude mice. Clinical and radiological (MRI and probe based confocal microscopy) evaluation showed a better fistula healing with higher microvascularization and a faster fistula closing in grafted mice. These effects appear to be related to an increase production of factors involved in tissue repair (EGF et le VEGF) and anti-inflammatory cytokines (TGF-ß2 et IL-10). We developed an unpublished eso-cutaneous fistula in a porcine model after plastic catheters placement by surgical and endoscopic way between the oesophageal lumen and the skin. We evaluated the therapeutic effect of a hydrogel with extracellular vesicles extracted from porcine adipose derived stem cells. The hydrogel with vesicles was injected into the fistula by endoscopy. Radiological and histological evaluation 15 days after injection showed a fistula tract closure in treated group.The third part of this work was to evaluate the effect of allograft of adipose derived stem cells 3D construct to prevent the stenosis after extended endoscopic submucosal dissection in a porcine model. There was a significant reduction of number and degree of stenosis with decrease fibrosis infiltration in the grafted group.In summary, thanks to their paracrine and antifibrotic effect, the mesenchymal stem cells organised as 3D construct allowed fistula closure in an entero-cutaneous model in mice and prevention of stenosis after extended oesophageal submucosal dissection in a porcine model. Moreover, endoscopic hydrogel and extracellular vesicles injection allowed oesophageal fistula healing in a porcine model. These promising results pose the challenge of future clinical studies
Ewald, Maxime. "High speed bio atomic force microscopy : application à l'étude de la structure et dynamique d'assemblage supramoléculaires : étude des interactions au niveau de la cellule". Thesis, Dijon, 2011. http://www.theses.fr/2011DIJOS043.
Testo completoThe atomic force microscope (AFM) made part of scanning near-field probe microscopy. Thanks to its versatility, many fields as physics, chemistry or biology use this technique. However, the field of investigation of the classical AFM microscope is limited temporally and spatially. Indeed, due to his scan speed limitation and surface interaction caracterisation limitation, studies of molecular dynamics and sub-surface elements are not possible. We show that the volume caracterisation is permitted using a non-destructive imaging method, called Scanning Near-Field by Ultrasound Holography (SNFUH). This tool developed for study in air and liquid has provided depth information as well as spatial resolution at the nanometer scale using resonant frequencies of about range of MHz. Calibration has been performed on samples of buried or not structures made by e-beam lithography and have been used to adjust the resonant frequency and understand the acoustic image formation (depth investigation and contrast in-version). We have developed a non-invasive and innovative tool of characterization for biology : he presents a huge potential for biological samples in terms of resolution and information. Classical AFM and acoustic SNFUH microscopes are time resolution limited. To overcome this time constraint, a prototype, High Speed Atomic Force Microscope (HS-AFM), has been developed by the team of Prof. T. Ando, Kanazawa University (Japan). It allows a scan rate at video speed, i.e. 25 frames/s, in liquid medium. We have improved the prototype, through a new generation of feedback control and increased the scan area. The resolution depends strongly of the probe used. Moreover a better image quality is obtained through the use of carbon tips on these cantilevers. Finally, we show our results obtained with these two microscopy techniques about biological buildings in liquid environment. Thereby, with the HS-AFM microscope, biomolecular dynamics have been visualized (e.g. protein-DNA structures) with nanometric resolution. Then a study about intracellular conformational changes of keratinocytes living cells in their physiological medium has been realized by acoustic microscopy SNFUH and show deterioration of biological components. All of these results provide new insights in biology field
Ait, Hamouda Hocine. "Étude du trafic cellulaire de la convertase de proprotéine PCSK9 responsable de la dégradation du récepteur des lipoprotéines de faible densité (LDLR)". Thèse, 2014. http://hdl.handle.net/1866/11842.
Testo completoCoronary heart diseases (CHD) are a leading cause of death in Western societies. Hypercholesterolemia is a major risk factor for CHD. It is characterized by high levels of circulating low-density lipoprotein cholesterol (LDL, also called "bad cholesterol"). The prolonged presence of elevated levels of LDL in the circulation increases the risk of formation of atherosclerotic plaques, which can lead to obstruction of arteries and myocardial infarction. LDL is normally cleared from the blood through the binding of its sole protein constituent apolipoprotein B100 to hepatic LDL receptor (LDLR), which mediates its endocytosis in the liver. Human genetic studies have identified PCSK9 as the third gene responsible of autosomal dominant hypercholesterolemia after LDLR and its ligand apolipoprotein B100. PCSK9 interacts with the LDLR and induces its degradation thereby causing plasma LDL levels to rise. PCSK9 gain-of-function (GOF) mutations are associated with elevated plasma LDL levels and premature CHD while PCSK9 loss-offunction (LOF) mutations reduce the risk of CHD up to ~88% owing to reduction of circulating LDL. Accordingly, PCSK9 is recognized as a major pharmacological target to lower the risk of CHD. PCSK9 binds the LDLR at the cell surface and/or in the Golgi apparatus of hepatocytes and causes its degradation in lysosomes by a mechanism not yet clearly understood. The goal of this study was to determine why some human PCSK9 mutations fail to induce LDLR degradation while others increase it in lysosomes. Several PCSK9 LOF and GOF mutations were fused to the fluorescent protein mCherry to study their molecular mobility in living human liver cells. Our quantitative analysis of fluorescence recovery after photobleaching (FRAP) showed that PCSK9 GOF mutations S127R and D129G have a higher protein mobility (>35% compared to WT) at the trans- Golgi network (TGN). Our quantitative analysis of inverse fluorescence recovery after photobleaching (iFRAP) showed that PCSK9 LOF mutation R46L presented a much slower protein mobility (<22% compared to WT) and a much slower mobile fraction (<40% compared to WT). In addition, our confocal and electron microscopy analyses demonstrate for the first time that PCSK9 is localized and concentrated at the TGN of human hepatocytes. Furthermore, our results demonstrate that PCSK9 localization in the TGN is mediated through its C-terminal cysteine and histidine-rich domain (CHRD), which is essential for LDLR degradation. Also, our live-cell analyses demonstrate for the first time that the CHRD is not required for internalization of PCSK9. These results provide important new information on the mechanism of action of PCSK9 and may ultimately help in the development of inhibitors of the PCSK9-induced LDLR degradation.