Letteratura scientifica selezionata sul tema "HLA knockout"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "HLA knockout".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "HLA knockout"
McCarty, Todd M., Zhiwei Yu, Xiping Liu, Don J. Diamond e Joshua D. I. Ellenhorn. "An HLA-restricted, p53 specific immune response from HLA transgenic p53 knockout mice". Annals of Surgical Oncology 5, n. 1 (gennaio 1998): 93–99. http://dx.doi.org/10.1007/bf02303770.
Testo completoSuzuki, Daisuke, Naoshi Sugimoto, Norihide Yoshikawa, Hiroshi Endo, Sou Nakamura, Akitsu Hotta e Koji Eto. "Natural Killer Cell Activities Against iPSCs-Derived HLA-Knockout Platelets and Megakaryocytes Reveal Perfect Rejection Profiles for Allotransfusion". Blood 128, n. 22 (2 dicembre 2016): 3841. http://dx.doi.org/10.1182/blood.v128.22.3841.3841.
Testo completoKwon, Yoo-Wook, Hyo-Suk Ahn, Jin-Woo Lee, Han-Mo Yang, Hyun-Jai Cho, Seok Joong Kim, Shin-Hyae Lee et al. "HLA DR Genome Editing with TALENs in Human iPSCs Produced Immune-Tolerant Dendritic Cells". Stem Cells International 2021 (20 maggio 2021): 1–14. http://dx.doi.org/10.1155/2021/8873383.
Testo completoZha, Shijun, Johan Chin-Kang Tay, Sumin Zhu, Zhendong Li, Zhicheng Du e Shu Wang. "Generation of Mesenchymal Stromal Cells with Low Immunogenicity from Human PBMC-Derived β2 Microglobulin Knockout Induced Pluripotent Stem Cells". Cell Transplantation 29 (1 gennaio 2020): 096368972096552. http://dx.doi.org/10.1177/0963689720965529.
Testo completoKarkischenko, V. N., A. G. Berzina, I. A. Pomytkin, E. S. Glotova, M. A. Savina, D. V. Petrov, L. A. Taboyakova, L. А. Bolotskih e I. A. Vasil’eva. "Immune Response in HLA-A*02:01 Transgenic Humanized Mice to the Introduction of Horse IgG Antigen". Journal Biomed 20, n. 2 (23 luglio 2024): 45–52. http://dx.doi.org/10.33647/2074-5982-20-2-45-52.
Testo completoRivera González, Lorena, Yaritza Inostroza-Nieves, Alexandra Lozano, Pablo J. López, Jamie Rosado Alicea, Gregory N. Prado, Jose R. Romero e Alicia Rivera. "Endothelin-1 Regulates Molecules of the Major Histocompatibility Complex: Role in Sickle Cell Disease". Blood 128, n. 22 (2 dicembre 2016): 3638. http://dx.doi.org/10.1182/blood.v128.22.3638.3638.
Testo completoVeldman, Johanna, Lydia Visser, Magdalena Huberts-Kregel, Natasja Muller, Bouke Hepkema, Anke van den Berg e Arjan Diepstra. "Rosetting T cells in Hodgkin lymphoma are activated by immunological synapse components HLA class II and CD58". Blood 136, n. 21 (19 novembre 2020): 2437–41. http://dx.doi.org/10.1182/blood.2020005546.
Testo completoChen, Liye, Hui Shi, Jack Yuan e Paul Bowness. "Position 97 of HLA-B, a residue implicated in pathogenesis of ankylosing spondylitis, plays a key role in cell surface free heavy chain expression". Annals of the Rheumatic Diseases 76, n. 3 (11 agosto 2016): 593–601. http://dx.doi.org/10.1136/annrheumdis-2016-209512.
Testo completoTorikai, Hiroki, Andreas Reik, Carrie Yuen, Yuanyue Zhou, Denise Kellar, Helen Huls, Edus H. Warren et al. "HLA and TCR Knockout by Zinc Finger Nucleases: Toward “off-the-Shelf” Allogeneic T-Cell Therapy for CD19+ Malignancies." Blood 116, n. 21 (19 novembre 2010): 3766. http://dx.doi.org/10.1182/blood.v116.21.3766.3766.
Testo completoLegut, Mateusz, Garry Dolton, Afsar Ali Mian, Oliver G. Ottmann e Andrew K. Sewell. "CRISPR-mediated TCR replacement generates superior anticancer transgenic T cells". Blood 131, n. 3 (18 gennaio 2018): 311–22. http://dx.doi.org/10.1182/blood-2017-05-787598.
Testo completoTesi sul tema "HLA knockout"
Wang, Valentine. "Improving Allogeneic CAR-T cells : HLA class I KO Virus Specific T cells to limit GvHD and graft rejection". Electronic Thesis or Diss., Université de Lorraine, 2024. https://docnum.univ-lorraine.fr/ulprive/DDOC_T_2024_0235_WANG.pdf.
Testo completoCAR-T cell therapy have revolutionized cancer treatment by modifying a patient's T cells to target specific tumor antigens. This personalized approach has shown remarkable success in treating B-cell malignancies like leukemia and lymphoma. However, the process is costly and time-consuming, as it involves collecting and modifying the patient's own cells, which delays treatment. Moreover, some patients may not have sufficient or viable T cells due to prior treatments or advanced disease stages, limiting the availability of CAR-T therapies for all patients.To address these challenges, allogeneic CAR-T cells from healthy donors provide a faster and more scalable solution, reducing production time and costs. However, these off-the-shelf therapies face risks like graft-versus-host disease (GvHD), where donor cells might attack the patient's tissues. Our study explored combining CAR technology with Virus Specific T cells (VSTs), known for their antiviral and antitumor properties, to generate CAR-VSTs. These dual-specific CAR-VSTs present a promising alternative, especially for patients prone to both tumor relapse and viral reactivation.In our study, we generated CAR-Ts and CAR-VSTs from same donors obtaining 40.28%±9.30% and 35.96%±11.40% CD19.CAR expression on day 7 (N=3), respectively. In vitro, CAR-VSTs showed robust tumor clearance similar to CAR-Ts, achieving 74.13%±22.06% lysis of CD19+ tumor cells. In a murine lymphoma model, both CAR-VSTs and CAR-Ts demonstrated comparable antitumor efficacy, successfully controlling tumor growth and improving survival. Moreover, CAR-VSTs maintained their antiviral function, efficiently lysing 62.32%±13.84% virus-peptide-pulsed cells, similar to native VSTs. We assessed the alloreactivity of CAR-VSTs and found that they exhibited significantly lower CD3 proliferation rates (28.27%±21.64%) compared to CAR-T cells (88.3%±24.48%, p=0.0285, N=4), indicating a reduced risk of GvHD. CAR-VSTs' dual-specificity for both tumor and viral antigens makes them a powerful tool to address cancer relapse and viral complications in patients.In collaboration with the University of North Carolina, we explored strategies to delete HLA class I molecules in CAR-VSTs by targeting B-2-microglobulin (B2M), aiming to reduce immune rejection. In addition, we worked on overexpressing tolerogenic molecules such as HLA-E and HLA-G to prevent NK cell-mediated lysis. Our results showed an HLA-ABC expression of 15.1±14.6% (N=11) after CRISPR/Cas9 knockout, which indicates successful deletion, though further optimization is necessary to prevent NK-lysis by re-expressing HLA-E or HLA-G.In conclusion, generating HLA-E+ or G+/B2M-/CAR-VSTs offers a promising alternative for creating fully allogeneic cells. These modified CAR-VSTs retain their dual antiviral and antitumor functions, making them a promising candidate for "off-the-shelf" immunotherapies that could reduce the risks of immune rejection and graft-versus-host disease
Libri sul tema "HLA knockout"
Pham, Minh-Ha T. Why We Can't Have Nice Things. Duke University Press, 2022. http://dx.doi.org/10.1215/9781478023210.
Testo completoJara Orellana,, Claudia. Efectos de la proteína Tau sobre la disfunción mitocondrial y el deterioro cognitivo en el envejecimiento. Universidad Autónoma de Chile, 2018. http://dx.doi.org/10.32457/20.500.12728/87452018dcbm6.
Testo completoCapitoli di libri sul tema "HLA knockout"
Bly, Mary. "Bawdy Virgins and Queer Puns". In Queer Virgins and Virgin Queans on the Early Modern Stage, 1–27. Oxford University PressOxford, 2000. http://dx.doi.org/10.1093/oso/9780198186991.003.0001.
Testo completoAtti di convegni sul tema "HLA knockout"
Neklesova, M. V., S. A. Silonov, E. Y. Smirnov, R. R. Sharipov, A. M. Surin, I. M. Kuznetsova, K. K. Turoverov e A. V. Fonin. "THE ROLE OF PROMYELOCYTIC LEUKEMIA PROTEIN IN MAMMALIAN INTRACELLULAR CALCIUM TRANSPORT". In XI МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ МОЛОДЫХ УЧЕНЫХ: БИОИНФОРМАТИКОВ, БИОТЕХНОЛОГОВ, БИОФИЗИКОВ, ВИРУСОЛОГОВ, МОЛЕКУЛЯРНЫХ БИОЛОГОВ И СПЕЦИАЛИСТОВ ФУНДАМЕНТАЛЬНОЙ МЕДИЦИНЫ. IPC NSU, 2024. https://doi.org/10.25205/978-5-4437-1691-6-262.
Testo completo