Letteratura scientifica selezionata sul tema "Hilbert spaces"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Hilbert spaces".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Hilbert spaces"
Sharma, Sumit Kumar, e Shashank Goel. "Frames in Quaternionic Hilbert Spaces". Zurnal matematiceskoj fiziki, analiza, geometrii 15, n. 3 (25 giugno 2019): 395–411. http://dx.doi.org/10.15407/mag15.03.395.
Testo completoBellomonte, Giorgia, e Camillo Trapani. "Rigged Hilbert spaces and contractive families of Hilbert spaces". Monatshefte für Mathematik 164, n. 3 (8 ottobre 2010): 271–85. http://dx.doi.org/10.1007/s00605-010-0249-1.
Testo completoSánchez, Félix Cabello. "Twisted Hilbert spaces". Bulletin of the Australian Mathematical Society 59, n. 2 (aprile 1999): 177–80. http://dx.doi.org/10.1017/s0004972700032792.
Testo completoCHITESCU, ION, RAZVAN-CORNEL SFETCU e OANA COJOCARU. "Kothe-Bochner spaces that are Hilbert spaces". Carpathian Journal of Mathematics 33, n. 2 (2017): 161–68. http://dx.doi.org/10.37193/cjm.2017.02.03.
Testo completoPisier, Gilles. "Weak Hilbert Spaces". Proceedings of the London Mathematical Society s3-56, n. 3 (maggio 1988): 547–79. http://dx.doi.org/10.1112/plms/s3-56.3.547.
Testo completoFabian, M., G. Godefroy, P. Hájek e V. Zizler. "Hilbert-generated spaces". Journal of Functional Analysis 200, n. 2 (giugno 2003): 301–23. http://dx.doi.org/10.1016/s0022-1236(03)00044-2.
Testo completoRudolph, Oliver. "Super Hilbert Spaces". Communications in Mathematical Physics 214, n. 2 (novembre 2000): 449–67. http://dx.doi.org/10.1007/s002200000281.
Testo completoNg, Chi-Keung. "Topologized Hilbert spaces". Journal of Mathematical Analysis and Applications 418, n. 1 (ottobre 2014): 108–20. http://dx.doi.org/10.1016/j.jmaa.2014.03.073.
Testo completovan den Boogaart, Karl Gerald, Juan José Egozcue e Vera Pawlowsky-Glahn. "Bayes Hilbert Spaces". Australian & New Zealand Journal of Statistics 56, n. 2 (giugno 2014): 171–94. http://dx.doi.org/10.1111/anzs.12074.
Testo completoSchmitt, L. M. "Semidiscrete Hilbert spaces". Acta Mathematica Hungarica 53, n. 1-2 (marzo 1989): 103–7. http://dx.doi.org/10.1007/bf02170059.
Testo completoTesi sul tema "Hilbert spaces"
Wigestrand, Jan. "Inequalities in Hilbert Spaces". Thesis, Norwegian University of Science and Technology, Department of Mathematical Sciences, 2008. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9673.
Testo completoThe main result in this thesis is a new generalization of Selberg's inequality in Hilbert spaces with a proof. In Chapter 1 we define Hilbert spaces and give a proof of the Cauchy-Schwarz inequality and the Bessel inequality. As an example of application of the Cauchy-Schwarz inequality and the Bessel inequality, we give an estimate for the dimension of an eigenspace of an integral operator. Next we give a proof of Selberg's inequality including the equality conditions following [Furuta]. In Chapter 2 we give selected facts on positive semidefinite matrices with proofs or references. Then we use this theory for positive semidefinite matrices to study inequalities. First we give a proof of a generalized Bessel inequality following [Akhiezer,Glazman], then we use the same technique to give a new proof of Selberg's inequality. We conclude with a new generalization of Selberg's inequality with a proof. In the last section of Chapter 2 we show how the matrix approach developed in Chapter 2.1 and Chapter 2.2 can be used to obtain optimal frame bounds. We introduce a new notation for frame bounds.
Ameur, Yacin. "Interpolation of Hilbert spaces". Doctoral thesis, Uppsala universitet, Matematiska institutionen, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-1753.
Testo completoAmeur, Yacin. "Interpolation of Hilbert spaces /". Uppsala : Matematiska institutionen, Univ. [distributör], 2001. http://publications.uu.se/theses/91-506-1531-9/.
Testo completoPanayotov, Ivo. "Conjugate gradient in Hilbert spaces". Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=82402.
Testo completoBahmani, Fatemeh. "Ternary structures in Hilbert spaces". Thesis, Queen Mary, University of London, 2011. http://qmro.qmul.ac.uk/xmlui/handle/123456789/697.
Testo completoDas, Tushar. "Kleinian Groups in Hilbert Spaces". Thesis, University of North Texas, 2012. https://digital.library.unt.edu/ark:/67531/metadc149579/.
Testo completoHarris, Terri Joan Mrs. "HILBERT SPACES AND FOURIER SERIES". CSUSB ScholarWorks, 2015. https://scholarworks.lib.csusb.edu/etd/244.
Testo completoDieuleveut, Aymeric. "Stochastic approximation in Hilbert spaces". Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEE059/document.
Testo completoThe goal of supervised machine learning is to infer relationships between a phenomenon one seeks to predict and “explanatory” variables. To that end, multiple occurrences of the phenomenon are observed, from which a prediction rule is constructed. The last two decades have witnessed the apparition of very large data-sets, both in terms of the number of observations (e.g., in image analysis) and in terms of the number of explanatory variables (e.g., in genetics). This has raised two challenges: first, avoiding the pitfall of over-fitting, especially when the number of explanatory variables is much higher than the number of observations; and second, dealing with the computational constraints, such as when the mere resolution of a linear system becomes a difficulty of its own. Algorithms that take their roots in stochastic approximation methods tackle both of these difficulties simultaneously: these stochastic methods dramatically reduce the computational cost, without degrading the quality of the proposed prediction rule, and they can naturally avoid over-fitting. As a consequence, the core of this thesis will be the study of stochastic gradient methods. The popular parametric methods give predictors which are linear functions of a set ofexplanatory variables. However, they often result in an imprecise approximation of the underlying statistical structure. In the non-parametric setting, which is paramount in this thesis, this restriction is lifted. The class of functions from which the predictor is proposed depends on the observations. In practice, these methods have multiple purposes, and are essential for learning with non-vectorial data, which can be mapped onto a vector in a functional space using a positive definite kernel. This allows to use algorithms designed for vectorial data, but requires the analysis to be made in the non-parametric associated space: the reproducing kernel Hilbert space. Moreover, the analysis of non-parametric regression also sheds some light on the parametric setting when the number of predictors is much larger than the number of observations. The first contribution of this thesis is to provide a detailed analysis of stochastic approximation in the non-parametric setting, precisely in reproducing kernel Hilbert spaces. This analysis proves optimal convergence rates for the averaged stochastic gradient descent algorithm. As we take special care in using minimal assumptions, it applies to numerous situations, and covers both the settings in which the number of observations is known a priori, and situations in which the learning algorithm works in an on-line fashion. The second contribution is an algorithm based on acceleration, which converges at optimal speed, both from the optimization point of view and from the statistical one. In the non-parametric setting, this can improve the convergence rate up to optimality, even inparticular regimes for which the first algorithm remains sub-optimal. Finally, the third contribution of the thesis consists in an extension of the framework beyond the least-square loss. The stochastic gradient descent algorithm is analyzed as a Markov chain. This point of view leads to an intuitive and insightful interpretation, that outlines the differences between the quadratic setting and the more general setting. A simple method resulting in provable improvements in the convergence is then proposed
Boralugoda, Sanath Kumara. "Prox-regular functions in Hilbert spaces". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0006/NQ34740.pdf.
Testo completoLapinski, Felicia. "Hilbert spaces and the Spectral theorem". Thesis, Uppsala universitet, Analys och sannolikhetsteori, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-454412.
Testo completoLibri sul tema "Hilbert spaces"
Gaussian Hilbert spaces. Cambridge, U.K: Cambridge University Press, 1997.
Cerca il testo completoDebnath, Lokenath. Hilbert spaces with applications. 3a ed. Oxford: Academic, 2005.
Cerca il testo completoMlak, W. Hilbert spaces and operator theory. Dordrecht: Boston, 1991.
Cerca il testo completoMashreghi, Javad. Hilbert spaces of analytic functions. Providence, R.I: American Mathematical Society, 2010.
Cerca il testo completoMashreghi, Javad. Hilbert spaces of analytic functions. Providence, R.I: American Mathematical Society, 2010.
Cerca il testo completoJavad, Mashreghi, Ransford Thomas e Seip Kristian 1962-, a cura di. Hilbert spaces of analytic functions. Providence, R.I: American Mathematical Society, 2010.
Cerca il testo completoBanach-Hilbert spaces, vector measures, and group representations. River Edge, NJ: World Scientific, 2002.
Cerca il testo completoSarason, Donald. Sub-Hardy Hilbert spaces in the unit disk. New York: Wiley, 1994.
Cerca il testo completoSimon, Jacques. Banach, Fréchet, Hilbert and Neumann Spaces. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119426516.
Testo completo1964-, McCarthy John E., a cura di. Pick interpolation and Hilbert function spaces. Providence, R.I: American Mathematical Society, 2002.
Cerca il testo completoCapitoli di libri sul tema "Hilbert spaces"
D’Angelo, John P. "Hilbert Spaces". In Hermitian Analysis, 45–94. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8526-1_2.
Testo completoRoman, Steven. "Hilbert Spaces". In Advanced Linear Algebra, 263–90. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4757-2178-2_14.
Testo completoOvchinnikov, Sergei. "Hilbert Spaces". In Universitext, 149–91. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91512-8_7.
Testo completoCicogna, Giampaolo. "Hilbert Spaces". In Undergraduate Lecture Notes in Physics, 1–55. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76165-7_1.
Testo completoGasquet, Claude, e Patrick Witomski. "Hilbert Spaces". In Texts in Applied Mathematics, 141–52. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-1598-1_16.
Testo completoKomornik, Vilmos. "Hilbert Spaces". In Lectures on Functional Analysis and the Lebesgue Integral, 3–54. London: Springer London, 2016. http://dx.doi.org/10.1007/978-1-4471-6811-9_1.
Testo completoShima, Hiroyuki, e Tsuneyoshi Nakayama. "Hilbert Spaces". In Higher Mathematics for Physics and Engineering, 73–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/b138494_4.
Testo completovan der Vaart, Aad W., e Jon A. Wellner. "Hilbert Spaces". In Weak Convergence and Empirical Processes, 49–51. New York, NY: Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4757-2545-2_8.
Testo completoBrokate, Martin, e Götz Kersting. "Hilbert Spaces". In Compact Textbooks in Mathematics, 137–52. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15365-0_12.
Testo completoKubrusly, Carlos S. "Hilbert Spaces". In Elements of Operator Theory, 311–440. Boston, MA: Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4757-3328-0_5.
Testo completoAtti di convegni sul tema "Hilbert spaces"
RANDRIANANTOANINA, BEATA. "A CHARACTERIZATION OF HILBERT SPACES". In Proceedings of the Sixth Conference. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704450_0021.
Testo completoTaddei, Valentina, Luisa Malaguti e Irene Benedetti. "Nonlocal problems in Hilbert spaces". In The 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications (Madrid, Spain). American Institute of Mathematical Sciences, 2015. http://dx.doi.org/10.3934/proc.2015.0103.
Testo completoTang, Wai-Shing. "Biorthogonality and multiwavelets in Hilbert spaces". In International Symposium on Optical Science and Technology, a cura di Akram Aldroubi, Andrew F. Laine e Michael A. Unser. SPIE, 2000. http://dx.doi.org/10.1117/12.408620.
Testo completoPope, Graeme, e Helmut Bolcskei. "Sparse signal recovery in Hilbert spaces". In 2012 IEEE International Symposium on Information Theory - ISIT. IEEE, 2012. http://dx.doi.org/10.1109/isit.2012.6283506.
Testo completoMałkiewicz, Przemysław. "Physical Hilbert spaces in quantum gravity". In Proceedings of the MG14 Meeting on General Relativity. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813226609_0514.
Testo completoKhimshiashvili, G. "Loop spaces and Riemann-Hilbert problems". In Geometry and Topology of Manifolds. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc76-0-19.
Testo completoDeepshikha, Saakshi Garg, Lalit K. Vashisht e Geetika Verma. "On weaving fusion frames for Hilbert spaces". In 2017 International Conference on Sampling Theory and Applications (SampTA). IEEE, 2017. http://dx.doi.org/10.1109/sampta.2017.8024363.
Testo completoGritsutenko, Stanislav, Elina Biberdorf e Rui Dinis. "On the Sampling Theorem in Hilbert Spaces". In Computer Graphics and Imaging. Calgary,AB,Canada: ACTAPRESS, 2013. http://dx.doi.org/10.2316/p.2013.798-012.
Testo completoTuia, Devis, Gustavo Camps-Valls e Manel Martinez-Ramon. "Explicit recursivity into reproducing kernel Hilbert spaces". In ICASSP 2011 - 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2011. http://dx.doi.org/10.1109/icassp.2011.5947266.
Testo completoSUQUET, CHARLES. "REPRODUCING KERNEL HILBERT SPACES AND RANDOM MEASURES". In Proceedings of the 5th International ISAAC Congress. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812835635_0013.
Testo completoRapporti di organizzazioni sul tema "Hilbert spaces"
Saraivanov, Michael. Quantum Circuit Synthesis using Group Decomposition and Hilbert Spaces. Portland State University Library, gennaio 2000. http://dx.doi.org/10.15760/etd.1108.
Testo completoKorezlioglu, H., e C. Martias. Stochastic Integration for Operator Valued Processes on Hilbert Spaces and on Nuclear Spaces. Revision. Fort Belvoir, VA: Defense Technical Information Center, marzo 1986. http://dx.doi.org/10.21236/ada168501.
Testo completoFukumizu, Kenji, Francis R. Bach e Michael I. Jordan. Dimensionality Reduction for Supervised Learning With Reproducing Kernel Hilbert Spaces. Fort Belvoir, VA: Defense Technical Information Center, maggio 2003. http://dx.doi.org/10.21236/ada446572.
Testo completoTeolis, Anthony. Discrete Representation of Signals from Infinite Dimensional Hilbert Spaces with Application to Noise Suppression and Compression. Fort Belvoir, VA: Defense Technical Information Center, gennaio 1993. http://dx.doi.org/10.21236/ada453215.
Testo completoSalamon, Dietmar. Realization Theory in Hilbert Space. Fort Belvoir, VA: Defense Technical Information Center, luglio 1985. http://dx.doi.org/10.21236/ada158172.
Testo completoYao, Jen-Chih. A monotone complementarity problem in Hilbert space. Office of Scientific and Technical Information (OSTI), aprile 1990. http://dx.doi.org/10.2172/7043013.
Testo completoYao, Jen-Chih. A generalized complementarity problem in Hilbert space. Office of Scientific and Technical Information (OSTI), marzo 1990. http://dx.doi.org/10.2172/6930669.
Testo completoCottle, Richard W., e Jen-Chih Yao. Pseudo-Monotone Complementarity Problems in Hilbert Space. Fort Belvoir, VA: Defense Technical Information Center, luglio 1990. http://dx.doi.org/10.21236/ada226477.
Testo completoKallianpur, G., e V. Perez-Abreu. Stochastic Evolution Equations with Values on the Dual of a Countably Hilbert Nuclear Space. Fort Belvoir, VA: Defense Technical Information Center, luglio 1986. http://dx.doi.org/10.21236/ada174876.
Testo completoMonrad, D., e W. Philipp. Nearby Variables with Nearby Conditional Laws and a Strong Approximation Theorem for Hilbert Space Valued Martingales. Fort Belvoir, VA: Defense Technical Information Center, aprile 1989. http://dx.doi.org/10.21236/ada225992.
Testo completo