Letteratura scientifica selezionata sul tema "High Temperature Superconductor Fault Current Limiter"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "High Temperature Superconductor Fault Current Limiter".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Articoli di riviste sul tema "High Temperature Superconductor Fault Current Limiter"

1

Maguire, J. F., e J. Yuan. "Status of high temperature superconductor cable and fault current limiter projects at American Superconductor". Physica C: Superconductivity 469, n. 15-20 (ottobre 2009): 874–80. http://dx.doi.org/10.1016/j.physc.2009.05.089.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Passos, Carlos Auguto Cardoso, Marcos Tadeu D'azeredo Orlando, Juliana N. O. Pinto, Vinicius Toneto Abilio, Jnaína B. Depianti, Arthur Cavichini e Luiz Carlos Machado. "Development and Test of a Small Resistive Fault Current Limiting Device Based on a SmBaCuO Ceramic". Advanced Materials Research 975 (luglio 2014): 173–78. http://dx.doi.org/10.4028/www.scientific.net/amr.975.173.

Testo completo
Abstract (sommario):
Since the development of Low Critical Temperature Superconducting (low-Tc) materials, various studies have been published regarding this experimental concept. Recently, researchers have focused on the design and application of high-Tc superconductor (high-Tc) materials to develop fault current limiting circuit breakers. The operation of this circuit requires large prospective/limited current ratios, especially in hazardous areas. In spite of this, several studies describing the Superconducting Fault Current Limiter (SFCL) containing members of the bismuth, mercury or yttrium family cuprate have already been described. However, none of these studies included samarium cuprates. Consequently, we have conducted a study of a small superconducting current limiter device based on SmBa2Cu3O7-d samples. The preliminary results indicated that samarium cuprates could be applied to build superconducting fault current limiter devices. In tests using a polycrystalline sample, the superconducting properties were retained without modifications to its stoichiometry. These results suggest the possibility of future investigations into SFCL devices based on these superconducting ceramics. Keywords: High-Tc, Sm-123, Device, Fault current limiter.
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Hodge, J. D., H. Muller, D. S. Applegate e Q. Huang. "A resistive fault current limiter based on high temperature superconductors". Applied Superconductivity 3, n. 7-10 (luglio 1995): 469–82. http://dx.doi.org/10.1016/0964-1807(95)00074-7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Dike, Damian. "Concept and Viability of High Temperature Superconductor Fault Current Limiter for Power Systems Protection". IOSR Journal of Computer Engineering 12, n. 3 (2013): 76–89. http://dx.doi.org/10.9790/0661-1237689.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Noe, Mathias, e Michael Steurer. "High-temperature superconductor fault current limiters: concepts, applications, and development status". Superconductor Science and Technology 20, n. 3 (15 gennaio 2007): R15—R29. http://dx.doi.org/10.1088/0953-2048/20/3/r01.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Sheng, J., Z. Jin, B. Lin, L. Ying, L. Yao, J. Zhang, Y. Li e Z. Hong. "Electrical-Thermal Coupled Finite Element Model of High Temperature Superconductor for Resistive Type Fault Current Limiter". IEEE Transactions on Applied Superconductivity 22, n. 3 (giugno 2012): 5602004. http://dx.doi.org/10.1109/tasc.2011.2178576.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Paranthaman, M. Parans, e Teruo Izumi. "High-Performance YBCO-Coated Superconductor Wires". MRS Bulletin 29, n. 8 (agosto 2004): 533–41. http://dx.doi.org/10.1557/mrs2004.159.

Testo completo
Abstract (sommario):
AbstractThis issue of MRS Bulletin provides an overview of the current status of research and development in the area of high-temperature superconductor (HTS) wires. High-temperature oxide superconductors, discovered in the late 1980s, are moving into the second generation of their development.The first generation relied on bismuth strontium calcium copper oxide, and the second generation is based on yttrium barium copper oxide, which has the potential to be less expensive and to perform better.The potential uses of HTS wires for electric power applications include underground transmission cables, oil-free transformers, superconducting magnetic-energy storage units, fault-current limiters, high-efficiency motors, and compact generators.Wires of 10–100 m in length can now be made, but material and processing issues must be solved before an optimized production scheme can be achieved.This issue covers a range of processing techniques using energetic beams, rolling, and laser and chemical methods to form wires with good superconducting properties.
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Paul, W., M. Chen, M. Lakner, J. Rhyner, D. Braun e W. Lanz. "Fault current limiter based on high temperature superconductors – different concepts, test results, simulations, applications". Physica C: Superconductivity 354, n. 1-4 (maggio 2001): 27–33. http://dx.doi.org/10.1016/s0921-4534(01)00018-1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Na, Jin-Bae, Jae-Young Jang, Hyoun-Chul Jo, Young-Jin Hwang e Tae-Kuk Ko. "Experimental Study on the High Temperature Superconductor for Investigated Design Factors of Distribution and Transmission Level Resistive Type Superconductor Fault Current Limiter". Progress in Superconductivity and Cryogenics 13, n. 3 (30 settembre 2011): 10–13. http://dx.doi.org/10.9714/psac.2011.13.3.010.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Ye, Cheng Yu, e Zhao Ye Wang. "Challenges and Opportunities for the Applications of Unconventional Superconductors". Key Engineering Materials 891 (6 luglio 2021): 89–98. http://dx.doi.org/10.4028/www.scientific.net/kem.891.89.

Testo completo
Abstract (sommario):
Since the discovery of superconductors, research has shifted from simple metals to alloys and further to complex compounds. As the record of critical temperature gradually increases, more opportunities and challenges have emerged. The Bardeen-Cooper-Schrieffer theory failed to explain certain observations of unconventional superconductors. However, breakthroughs have been made on the new understanding of unconventional superconductors. This article will introduce various challenges to and opportunities for the application of unconventional superconductors, including the high-temperature superconducting fault-current limiter and the superconducting energy-storage system.
Gli stili APA, Harvard, Vancouver, ISO e altri

Tesi sul tema "High Temperature Superconductor Fault Current Limiter"

1

Matsumura, Toshiro, Tomohiro Aritake, Yasunobu Yokomizu, Hirotaka Shimizu e Norimitsu Murayama. "Performances of small fault current limiting breaker model with high Tc Superconductor". IEEE, 2005. http://hdl.handle.net/2237/6791.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Liang, Fei. "Non-inductive solenoid coils based on second generation high-temperature superconductors and their application in fault current limiters". Thesis, University of Bath, 2017. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.725399.

Testo completo
Abstract (sommario):
The gradual increase in global warming and environmental pollution has made low-carbon technologies an urgent need for the whole world. Superconducting technology, which is known for its extremely high conductivity and high power density, is capable enough to provide novel solutions, contributing to the future smart grid, thus aiding the power industry towards the realisation of a low-carbon and green planet. In recent decades, several industrial applications using superconducting technology have been developed. Of them, particularly in the power industry, a range of superconducting applications including superconducting magnetic energy storage (SMES), superconducting motors/generators, superconducting cables and superconducting fault current limiters (SFCLs) have been developed. Among them, SFCLs are one of the most promising and are successfully being implemented in power distribution networks. SFCLs exhibit low impedance during normal operation and gain considerable impedance under a fault condition, providing a new solution to the increasingly high fault current levels. However, most of the SFCL projects are limited to low-voltage and medium-voltage levels, there are very few successful operational trials of high voltage SFCLs. This thesis, for the first time, studies the comprehensive characteristics of solenoid type SFCLs based on second generation (2G) high temperature superconductors (HTS), which may be successfully implemented in power grids with high voltage levels. The main contributions of this work include three aspects: 1) proposing an innovative method for simulating the AC losses of the solenoid coils and an electro-magneto-thermal model for simulating the SFCL’s current limiting property; 2) comprehensive and in-depth comparison study concerning the application of the two types of non-inductive solenoid coils (braid type and non-intersecting type) in SFCLs both experimentally and numerically; and 3) the first and thorough discussion of the impact of different parameters such as pitch and radius of coils to the overall performance of braid type SFCLs and the validation of the braid type SFCL concept with a 220 V/300 A SFCL prototype. Based on these experimental and simulation works, the thesis provide strong guidance for the development of future non-inductive solenoid type SFCLs based on 2G HTS, which are promising for high voltage level power grid applications.
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Matsumura, Toshiro, Mitsuhiro Sugimura, Yasunobu Yokomizu, Hirotaka Shimizu, Masatoyo Shibuya, Michiharu Ichikawa e Hiroyuki Kado. "Generating performance of limiting impedance in flat type of fault current limiter with high Tc superconducting plate". IEEE, 2005. http://hdl.handle.net/2237/6790.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Sham, Jit Kumar. "High Temperature Superconducting Partial Core Transformer and Fault Current Limiter". Thesis, University of Canterbury. ELECTRICAL AND COMPUTER ENGINEERING, 2015. http://hdl.handle.net/10092/10519.

Testo completo
Abstract (sommario):
The thesis begins with an introduction to transformer theory. The partial core transformer is then introduced and compared with a full core design. A brief introduction to superconductors and high temperature superconductors is then presented. High temperature superconducting fault current limiters are then examined and the advantage of a high temperature superconducting partial core transformer and fault current limiter as a single unit is highlighted. The reverse design model is discussed followed by the model parameters that are used in designing the high temperature superconducting partial core transformer. Partial core transformers with copper windings and high temperature superconductor windings at the University of Canterbury were then tested and the measured results compared with the results calculated from the reverse design model, to validate the model. The high temperature superconducting partial core transformer failed during an endurance run and the investigation of the failure is then presented. The results of the failure investigation prompted an alternative winding insulation design. A model to calculate the time at which the high temperature superconducting winding of the partial core transformer would melt at different currents was then built. The time was calculated to be used in the operation of the quench detection mechanism and it could also be used in choosing a circuit breaker with a known operating time. The design of the high temperature superconducting partial core transformer and fault current limiter is then presented. Design configurations with different core length and winding length are examined. The idea behind choosing the final design for the high temperature superconducting partial core transformer and fault current limiter is then discussed. The final design of the high temperature superconducting partial core transformer and fault current limiter is then presented. A new 7.5 kVA, 230-248 V high temperature superconducting partial core transformer and fault current limiter was designed, built and tested. The windings are layer wound with first generation Bi2223 high temperature superconductor. A series of electrical tests were performed on the new device including open circuit, short circuit, resistive load, overload and fault ride through. These tests were performed to determine the operational characteristics of the new high temperature superconducting partial core transformer and fault current limiter. The measured results from the tests were compared with the calculated results. The fault ride through test results were then compared to a 15 kVA high temperature superconducting partial core transformer that was designed and built at the University of Canterbury. Since the resistive component of the silver matrix in Bi2223 high temperature superconductor plays a very little role in controlling the fault current, the current limited by the leakage reactance is compared between the two devices. The high temperature superconducting partial core transformer and fault current limiter was found to be 99.1% efficient at rated power with 5.7% regulation and fault current limiting ability of 500 % over the 15 kVA high temperature superconductor partial core transformer from University of Canterbury.
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Kurupakorn, C., H. Kojima, N. Hayakawa, M. Goto, N. Kashima, S. Nagaya, M. Noe, K. P. Juengst e H. Okubo. "Recovery characteristics after current limitation of high temperature superconducting fault current limiting transformer (HTc-SFCLT)". IEEE, 2005. http://hdl.handle.net/2237/6773.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Okubo, Hitoshi, Masahiro Hanai, Naoki Hayakawa, Fumihiko Kato e Hiroki Kojima. "Feasibility Study on a High-Temperature Superconducting Fault-Current-Limiting Cable (SFCLC) Using Flux-Flow Resistance". IEEE, 2012. http://hdl.handle.net/2237/20734.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Kurupakorn, C., N. Hayakawa, N. Kashima, S. Nagaya, M. Noe, K. P. Juengst e H. Okubo. "Development of high temperature superconducting fault current limiting transformer (HT/sub c/-SFCLT) with Bi2212 bulk coil". IEEE, 2004. http://hdl.handle.net/2237/6750.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Chassagnoux, Raphaël. "Etude des propriétés diélectriques de l'azote liquide et diphasique dans le cadre du limiteur de courant". Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAT104.

Testo completo
Abstract (sommario):
L’interconnexion de plus en plus grande des réseaux électriques traditionnels AC et l’émergence de réseaux DC s’accompagne de courants de court circuit plus importants, et de contraintes plus fortes sur les disjoncteurs haute tension lors de la coupure du courant. L’une des solutions pour maitriser le courant de court circuit consiste à insérer un limiteur de courant en série sur les lignes haute tension. Parmi les technologies existantes, le limiteur de courant supraconducteur est un candidat idéal du point de vue du réseau, mais il fait face à de nombreuses contraintes de dimensionnement. Parmi elles, l’isolation électrique est particulièrement critique et très spécifique à cette application : milieu cryogénique (azote liquide à -196°C), rubans supraconducteurs générant des renforcements de champ électrique, et chauffage transitoire des rubans lors de la limitation de courant qui induit une forte ébullition de l’azote liquide.L’objectif de ce travail est de rassembler des données et des connaissances pour le dimensionnement de l’isolation des limiteurs de courant. Le cas d’étude d’un limiteur inséré sur une ligne électrique permet de mettre en évidence les principales contraintes que celui-ci subit durant son fonctionnement. Ces contraintes sont reproduites dans un dispositif expérimental associant cryogénie et haute tension. Les résultats expérimentaux incluent des mesures de tensions de claquage obtenues dans diverses conditions de tension (DC, choc impulsionnel) de pression (de 1 à 4 bar), et de température (de 65 à 77 K), de distance inter électrode (5 et 10 mm), avec et sans chauffage de l’électrode ruban. L’observation des phénomènes d’ébullition et de pré claquage met en évidence des phénomènes et paramètres nouveaux, et permet d’interpréter qualitativement les tensions de claquage observées. L’un des résultats importants de ces travaux est la mise en évidence de l’influence complexe et parfois délétère du sous refroidissement (diminution de la température ou augmentation de la pression) sur les tensions de claquage, liée à la variation de la taille des bulles d’azote gazeux
The increasing number of interconnections in electrical networks and the massive integration of renewable energies nowadays comes with an increase of short circuit currents, and more constraints on high voltage circuit breaker during the current clearance. To solve this problem, a solution consists in inserting a fault current limiting device on electrical lines. Among the available technologies, the superconducting fault current limiter is ideal from the perspective of transmission system operator. However the design of this device is non-trivial, especially the electrical insulation, which is very specific to this apparatus: electrical insulation in a cryogenic environment (liquid nitrogen at - 196°C), superconducting tapes inducing electric field reinforcement, and strong transient heating generating numerous vapor bubbles.In this context, the aim of this work is to gather data and knowledge supporting the design of future superconducting fault current limiters. First, the case study of a fault current limiter model inserted on an electrical line allowed to deduce the main stresses on this device during its working sequence. These constraints are then reproduced within a high voltage cryostat. Experimental results gathered include breakdown voltages measured in various conditions of voltage type (DC or impulse voltage), pressure (from 1 to 4 bars), temperature (from 65 to 77 K), inter electrode gap (from 5 to 10 mm), with and without transient heating of the tape. The observation of boiling conditions and pre breakdown phenomena evidenced several new phenomena, and allowed to perform a qualitative interpretation of the breakdown voltages. An important result is the observation of the complex and sometimes adverse effect of subcooling (temperature decrease or pressure increase) on breakdown voltages, due to the variation of nitrogen bubbles size
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Jyh-Ming, Lin, e 林志明. "Study of the Fault Current Limiter with single-grained Y-Ba-Cu-O High temperature Superconductor Ring". Thesis, 2000. http://ndltd.ncl.edu.tw/handle/90481212711843503703.

Testo completo
Abstract (sommario):
碩士
國立成功大學
材料科學及工程學系
88
Abstract The single-grained Y-Ba-Cu-O high Tc superconductors(HTS) offer applications in the field of Fault Current Limiter (FCL) in electric power networks. Current limitation can be accomplished by means of the non-linear impedance of a transformer with a primary winding carrying the power circuit current and a short-circuited secondary winding consisting of a hollow cylinder or ring of single grained YBCO material. The latter remains superconductive at normal load current level which act as a magnetic flux shielding device to provide a low impedance. If the defined current level is exceeded a certain level, which generates a sufficient high magnetic flux penetrating into the superconducting ring, the secondary winding turns resistive providing a high impedance which limits the prospective fault current. A laboratory screening fault current limiter has been built and its performance has been tested. The relationship between the superconducting properties of single grained YBCO materials and the performance will be reported.
Gli stili APA, Harvard, Vancouver, ISO e altri

Capitoli di libri sul tema "High Temperature Superconductor Fault Current Limiter"

1

Leung, E. M. W., G. W. Albert, M. Dew, P. Gurrola, K. Muehleman, B. Gamble, C. Russo et al. "High Temperature Superconducting Fault Current Limiter for Utility Applications". In Advances in Cryogenic Engineering Materials, 961–68. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-9059-7_126.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Gerhold, J. "Power System Feedback from High-Tc Superconductor Shielded Core Fault Current Limiter". In Advances in Cryogenic Engineering, 1159–66. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-9047-4_144.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

"Fault Current Limiters". In Applications of High Temperature Superconductors to Electric Power Equipment, 173–217. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470877890.ch8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Hassenzahl, W. "Superconducting fault current limiters and power cables". In High Temperature Superconductors (HTS) for Energy Applications, 259–93. Elsevier, 2012. http://dx.doi.org/10.1533/9780857095299.2.259.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Meerovich, V., e V. Sokolovsky. "High-temperature superconducting fault current limiters (FCLs) for power grid applications". In Superconductors in the Power Grid, 283–324. Elsevier, 2015. http://dx.doi.org/10.1016/b978-1-78242-029-3.00009-1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Veira, J. A., M. R. Osorio e F. Vidal. "Thermal Behaviour and Refrigeration of High-Temperature Superconducting Fault Current Limiters and Microlimiters". In Superconductors - Properties, Technology, and Applications. InTech, 2012. http://dx.doi.org/10.5772/38561.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Atti di convegni sul tema "High Temperature Superconductor Fault Current Limiter"

1

Wroe, F. C. R. "High temperature superconductors for fault current limitation on local power distribution networks". In IEE Colloquium on Fault Current Limiters - A Look at Tomorrow. IEE, 1995. http://dx.doi.org/10.1049/ic:19950141.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Darie, Eleonora, e Emanuel Darie. "Fault current limiters based on high temperature superconductors". In 2007 8th International Conference on Electric Fuses and their Applications. IEEE, 2007. http://dx.doi.org/10.1109/icefa.2007.4419969.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Harrison, E. "High temperature superconducting fault current limiter". In IEE Seminar Power Quality: Monitoring and Solutions. IEE, 2000. http://dx.doi.org/10.1049/ic:20000672.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Shawel, Dereje Nigussie, e Getachew Bekele. "Design Procedure of a Hybrid YBCO- Superconductor Fault Current Limiter (SFCL) for a High Voltage Substation". In 2019 IEEE PES/IAS PowerAfrica. IEEE, 2019. http://dx.doi.org/10.1109/powerafrica.2019.8928844.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Chu, Jianfeng, Shuhong Wang e Jie Qiu. "Simulation and Analysis for New Bridge-Type High Temperature Superconducting Fault Current Limiter". In 2012 Sixth International Conference on Electromagnetic Field Problems and Applications (ICEF). IEEE, 2012. http://dx.doi.org/10.1109/icef.2012.6310274.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Dos Santos, Gabriel, Flávio Goulart dos Reis Martins, Bárbara Maria Oliveira Santos, Daniel Henrique Nogueira Dias, Guilherme Gonçalves Sotelo e Felipe Sass. "Simulation of a Superconductor Fault Current Limiter with finite element method using A-V-H formulation". In Simpósio Brasileiro de Sistemas Elétricos - SBSE2020. sbabra, 2020. http://dx.doi.org/10.48011/sbse.v1i1.2229.

Testo completo
Abstract (sommario):
Nowadays, the complexity of electrical power systems is increasing. Consequently, the occurrence and the amplitude of the fault current are rising. This fault currents harm the substations’ electrical equipment. Besides, the growth in the fault current level is forcing the change of the circuit breakers to others with a higher interruption capability. A proposal to solve this problem is the fault current limiter (FCL). This equipment has low impedance in the normal operation and high impedance in a short circuit moment. Superconductors are an advantageous choice of material in this case, because of their properties. In order to simulate this equipment, the 2-D Finite Element Method (FEM) has been used. In this paper, a novel FEM simulation analysis of the saturated core Superconductor Fault Current Limiter (SFCL) is proposed using the A-V-H formulation. The current distribution in the superconducting coil is observed. The results are compared to the limited fault current measurements and simulations available in the literature.
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Yan, Zhiyong, Jiahui Zhu, Defu Wei, Shuai Wang, Yidong Zhu e Yan Zhang. "Parameter Investigation of Magneto-biased High Temperature Superconducting Fault Current Limiter in 10 kV Urban Power Grid". In 2020 IEEE Sustainable Power and Energy Conference (iSPEC). IEEE, 2020. http://dx.doi.org/10.1109/ispec50848.2020.9351201.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Heydari, H., A. Vahedi, F. Faghihi e M. Safdari. "Using of high temperature superconductive in secondary winding of two types of transformers: fault current limiter and current injection transformer". In 18th International Conference and Exhibition on Electricity Distribution (CIRED 2005). IEE, 2005. http://dx.doi.org/10.1049/cp:20050990.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Zhu, Jiahui, Panpan Chen, Huiming Zhang, Ming Qiu, Hongjie Zhang, Yan Zhang, Zhiyong Yan e Hanyang Qin. "Experimental Investigation on the Critical Current and AC Losses of a Self-Triggering Magneto-Biased High Temperature Superconducting Fault Current Limiter (SFCL)". In 2020 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD). IEEE, 2020. http://dx.doi.org/10.1109/asemd49065.2020.9276145.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Warzoha, Ronald, Amy S. Fleischer, Mahesh Gandhi e Ashok Sundaram. "A Computational Study of the Thermal Performance of a 15 kV Solid State Current Limiter Cooled by Immersion in Mineral Oil". In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66483.

Testo completo
Abstract (sommario):
This paper outlines the thermal performance of a unique liquid-cooled 15 kV/4000 A Solid State Fault Current Limiter (SSFCL) developed by Silicon Power of Malvern, PA with support of EPRI. The design features an extremely high power system which consumes 96 kW of power in a one phase configuration. The system is submerged in mineral oil coolant and the waste heat is dissipated by internal liquid convection and subsequently through an external radiator system driven by a centrifugal pump. This project numerically explores the effects of various design parameters on the heat dissipation and the resulting effect on the operating temperature of several components within the system.
Gli stili APA, Harvard, Vancouver, ISO e altri

Rapporti di organizzazioni sul tema "High Temperature Superconductor Fault Current Limiter"

1

Darmann, Frank, Robert Lombaerde, Franco Moriconi e Albert Nelson. Design, Test and Demonstration of Saturable Reactor High-Temperature Superconductor Fault Current Limiters. Office of Scientific and Technical Information (OSTI), marzo 2012. http://dx.doi.org/10.2172/1051565.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Stewart, Gary. Transmission Level High Temperature Superconducting Fault Current Limiter. Office of Scientific and Technical Information (OSTI), ottobre 2016. http://dx.doi.org/10.2172/1327898.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia