Segui questo link per vedere altri tipi di pubblicazioni sul tema: Hierarchical spatial modeling.

Libri sul tema "Hierarchical spatial modeling"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-23 libri per l'attività di ricerca sul tema "Hierarchical spatial modeling".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi i libri di molte aree scientifiche e compila una bibliografia corretta.

1

P, Carlin Bradley, e Gelfand Alan E. 1945-, a cura di. Hierarchical modeling and analysis for spatial data. Boca Raton: Chapman & Hall, 2004.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Lawson, Andrew. Bayesian disease mapping: Hierarchical modeling in spatial epidemiology. Boca Raton: Taylor & Francis, 2008.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Dorazio, Robert M. (Robert Matthew) e ScienceDirect (Online service), a cura di. Hierarchical modeling and inference in ecology: The analysis of data from populations, metapopulations and communities. Amsterdam: Academic, 2008.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Carlin, Bradley P., Sudipto Banerjee e Alan E. Gelfand. Hierarchical Modeling and Analysis for Spatial Data. Taylor & Francis Group, 2014.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Carlin, Bradley P., Sudipto Banerjee e Alan E. Gelfand. Hierarchical Modeling and Analysis for Spatial Data. Taylor & Francis Group, 2014.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Carlin, Bradley P., Sudipto Banerjee, Alan E. Gelfand e Banerjee Sudipto Staff. Hierarchical Modeling and Analysis for Spatial Data. Taylor & Francis Group, 2004.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Banerjee, Sudipto. Hierarchical Modeling and Analysis for Spatial Data. Taylor & Francis Group, 2003.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Banerjee, Sudipto, Bradley P. Carlin e Alan E. Gelfand. Hierarchical Modeling and Analysis for Spatial Data. Chapman and Hall/CRC, 2014. http://dx.doi.org/10.1201/b17115.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Banerjee, Sudipto, Bradley P. Carlin, Alan E. Gelfand e Sudipto Banerjee. Hierarchical Modeling and Analysis for Spatial Data. Chapman and Hall/CRC, 2003. http://dx.doi.org/10.1201/9780203487808.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Lawson, Andrew B. Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology. Taylor & Francis Group, 2008.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
11

Lawson, Andrew B. Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology. Taylor & Francis Group, 2013.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
12

Keiding, Niels, Andrew B. Lawson, Terry Speed, Byron J. Morgan e Peter Van Der Heijden. Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology. Taylor & Francis Group, 2008.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
13

Bayesian Disease Mapping Hierarchical Modeling In Spatial Epidemiology. Taylor & Francis Inc, 2013.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
14

Lawson, Andrew B. Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology, Third Edition. Taylor & Francis Group, 2018.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
15

Lawson, Andrew B. Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology, Third Edition. Taylor & Francis Group, 2018.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
16

Lawson, Andrew B. Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology, Second Edition. Taylor & Francis Group, 2013.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
17

Lawson, Andrew B. Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology, Third Edition. Taylor & Francis Group, 2018.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
18

Lawson, Andrew B. Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology, Third Edition. Taylor & Francis Group, 2018.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
19

Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology, Third Edition. Chapman and Hall/CRC, 2018.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
20

Gelfand, Alan E., Bradley P. Carlin e Sudipto Banerjee. Hierarchical Modeling and Analysis for Spatial Data (Monographs on Statistics and Applied Probability). Chapman & Hall/CRC, 2003.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Royle, J. Andrew, e Robert M. Dorazio. Hierarchical Modeling and Inference in Ecology: The Analysis of Data from Populations, Metapopulations and Communities. Elsevier Science & Technology Books, 2008.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
22

Royle, J. Andrew, e Marc Kery. Applied Hierarchical Modeling in Ecology : Analysis of Distribution, Abundance and Species Richness in R and BUGS Vol. 1 : Volume 1: Prelude and Static Models. Elsevier Science & Technology Books, 2015.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Wikle, Christopher K. Spatial Statistics. Oxford University Press, 2018. http://dx.doi.org/10.1093/acrefore/9780190228620.013.710.

Testo completo
Abstract (sommario):
The climate system consists of interactions between physical, biological, chemical, and human processes across a wide range of spatial and temporal scales. Characterizing the behavior of components of this system is crucial for scientists and decision makers. There is substantial uncertainty associated with observations of this system as well as our understanding of various system components and their interaction. Thus, inference and prediction in climate science should accommodate uncertainty in order to facilitate the decision-making process. Statistical science is designed to provide the tools to perform inference and prediction in the presence of uncertainty. In particular, the field of spatial statistics considers inference and prediction for uncertain processes that exhibit dependence in space and/or time. Traditionally, this is done descriptively through the characterization of the first two moments of the process, one expressing the mean structure and one accounting for dependence through covariability.Historically, there are three primary areas of methodological development in spatial statistics: geostatistics, which considers processes that vary continuously over space; areal or lattice processes, which considers processes that are defined on a countable discrete domain (e.g., political units); and, spatial point patterns (or point processes), which consider the locations of events in space to be a random process. All of these methods have been used in the climate sciences, but the most prominent has been the geostatistical methodology. This methodology was simultaneously discovered in geology and in meteorology and provides a way to do optimal prediction (interpolation) in space and can facilitate parameter inference for spatial data. These methods rely strongly on Gaussian process theory, which is increasingly of interest in machine learning. These methods are common in the spatial statistics literature, but much development is still being done in the area to accommodate more complex processes and “big data” applications. Newer approaches are based on restricting models to neighbor-based representations or reformulating the random spatial process in terms of a basis expansion. There are many computational and flexibility advantages to these approaches, depending on the specific implementation. Complexity is also increasingly being accommodated through the use of the hierarchical modeling paradigm, which provides a probabilistically consistent way to decompose the data, process, and parameters corresponding to the spatial or spatio-temporal process.Perhaps the biggest challenge in modern applications of spatial and spatio-temporal statistics is to develop methods that are flexible yet can account for the complex dependencies between and across processes, account for uncertainty in all aspects of the problem, and still be computationally tractable. These are daunting challenges, yet it is a very active area of research, and new solutions are constantly being developed. New methods are also being rapidly developed in the machine learning community, and these methods are increasingly more applicable to dependent processes. The interaction and cross-fertilization between the machine learning and spatial statistics community is growing, which will likely lead to a new generation of spatial statistical methods that are applicable to climate science.
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia