Articoli di riviste sul tema "Heat-engines"

Segui questo link per vedere altri tipi di pubblicazioni sul tema: Heat-engines.

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Heat-engines".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.

1

Johnson, Clifford V. "Holographic heat engines as quantum heat engines". Classical and Quantum Gravity 37, n. 3 (13 gennaio 2020): 034001. http://dx.doi.org/10.1088/1361-6382/ab5ba9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Kuboyama, Tatsuya, Hidenori Kosaka, Tetsuya Aizawa e Yukio Matsui. "A Study on Heat Loss in DI Diesel Engines(Diesel Engines, Performance and Emissions, Heat Recovery)". Proceedings of the International symposium on diagnostics and modeling of combustion in internal combustion engines 2004.6 (2004): 111–18. http://dx.doi.org/10.1299/jmsesdm.2004.6.111.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Gemmen, R., M. C. Williams e G. Richards. "Electrochemical Heat Engines". ECS Transactions 65, n. 1 (2 febbraio 2015): 243–52. http://dx.doi.org/10.1149/06501.0243ecst.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Willoughby, H. E. "Hurricane heat engines". Nature 401, n. 6754 (ottobre 1999): 649–50. http://dx.doi.org/10.1038/44287.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Johnson, Clifford V. "Holographic heat engines". Classical and Quantum Gravity 31, n. 20 (1 ottobre 2014): 205002. http://dx.doi.org/10.1088/0264-9381/31/20/205002.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

KRIBUS, ABRAHAM. "Heat Transfer in Miniature Heat Engines". Heat Transfer Engineering 25, n. 4 (giugno 2004): 1–3. http://dx.doi.org/10.1080/01457630490443505.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Courtney, W. "Cool running heat engines". Journal of Biological Physics and Chemistry 21, n. 3 (30 settembre 2021): 79–87. http://dx.doi.org/10.4024/12co20a.jbpc.21.03.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Holubec, Viktor, e Artem Ryabov. "Fluctuations in heat engines". Journal of Physics A: Mathematical and Theoretical 55, n. 1 (15 dicembre 2021): 013001. http://dx.doi.org/10.1088/1751-8121/ac3aac.

Testo completo
Abstract (sommario):
Abstract At the dawn of thermodynamics, Carnot’s constraint on efficiency of heat engines stimulated the formulation of one of the most universal physical principles, the second law of thermodynamics. In recent years, the field of heat engines acquired a new twist due to enormous efforts to develop and describe microscopic machines based on systems as small as single atoms. At microscales, fluctuations are an inherent part of dynamics and thermodynamic variables such as work and heat fluctuate. Novel probabilistic formulations of the second law imply general symmetries and limitations for the fluctuating output power and efficiency of the small heat engines. Will their complete understanding ignite a similar revolution as the discovery of the second law? Here, we review the known general results concerning fluctuations in the performance of small heat engines. To make the discussion more transparent, we illustrate the main abstract findings on exactly solvable models and provide a thorough theoretical introduction for newcomers to the field.
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Johnson, Clifford V. "Taub–Bolt heat engines". Classical and Quantum Gravity 35, n. 4 (12 gennaio 2018): 045001. http://dx.doi.org/10.1088/1361-6382/aaa010.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Ahmed, Wasif, Hong Zhe Chen, Elliott Gesteau, Ruth Gregory e Andrew Scoins. "Conical holographic heat engines". Classical and Quantum Gravity 36, n. 21 (14 ottobre 2019): 214001. http://dx.doi.org/10.1088/1361-6382/ab470b.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
11

Poletayev, Andrey D., Ian S. McKay, William C. Chueh e Arun Majumdar. "Continuous electrochemical heat engines". Energy & Environmental Science 11, n. 10 (2018): 2964–71. http://dx.doi.org/10.1039/c8ee01137k.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
12

Solomon, Dan. "Thermomagnetic mechanical heat engines". Journal of Applied Physics 65, n. 9 (maggio 1989): 3687–93. http://dx.doi.org/10.1063/1.342595.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
13

Valdès, L. C. "Competitive solar heat engines". Renewable Energy 29, n. 11 (settembre 2004): 1825–42. http://dx.doi.org/10.1016/j.renene.2004.02.008.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
14

Hilt, Matthew G., K. A. Pestka, G. D. Mahan, J. D. Maynard, D. Pickrell, B. Na e J. Tamburini. "Unconventional thermoacoustic heat engines". Journal of the Acoustical Society of America 119, n. 5 (maggio 2006): 3414. http://dx.doi.org/10.1121/1.4786811.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
15

Aneja, Preety. "Optimization and Efficiency Studies of Heat Engines: A Review". Journal of Advanced Research in Mechanical Engineering and Technology 07, n. 03 (7 ottobre 2020): 37–58. http://dx.doi.org/10.24321/2454.8650.202006.

Testo completo
Abstract (sommario):
This review aims to study the various theoretical and numerical investigations in the optimization of heat engines. The main focus is to discuss the procedures to derive the efficiency of heat engines under different operating regimes (or optimization criteria) for different models of heat engines such as endreversible models, stochastic models, low-dissipation models, quantum models etc. Both maximum power and maximum efficiency operational regimes are desirable but not economical, so to meet the thermo-ecological considerations, some other compromise-based criteria have been proposed such as Ω criterion (ecological criterion) and efficient power criterion. Thus, heat engines can be optimized to work at an efficiency which may not be the maximum (Carnot) efficiency. The optimization efficiency obtained under each criterion shows a striking universal behaviour in the near-equilibrium regime. We also discussed a multi-parameter combined objective function of heat engines. The optimization efficiency derived from the multi-parameter combined objective function includes a variety of optimization efficiencies, such as the efficiency at the maximum power, efficiency at the maximum efficiency-power state, efficiency at the maximum criterion, and Carnot efficiency. Thus, a comparison of optimization of heat engines under different criteria enables to choose the suitable one for the best performance of heat engine under different conditions.
Gli stili APA, Harvard, Vancouver, ISO e altri
16

Huleihil, Mahmoud, e Gedalya Mazor. "Golden Section Heat Engines and Heat Pumps". International Journal of Arts 2, n. 2 (31 agosto 2012): 1–7. http://dx.doi.org/10.5923/j.arts.20120202.01.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
17

Ke, Zhenying, Yang Xu e Zihao Guo. "Analysis of the social impact of heat engine and its future application". IOP Conference Series: Earth and Environmental Science 1011, n. 1 (1 aprile 2022): 012007. http://dx.doi.org/10.1088/1755-1315/1011/1/012007.

Testo completo
Abstract (sommario):
Abstract This paper aims to evaluate the social impact of the heat engine and analyze the application of heat engines in the future. This paper starts with some background information on heat engines and the challenges of gas pollution and gas shortage. The concepts of efficiency and environmental friendliness of the heat engine are widely discussed, which speeds up the development of several kinds of heat engines. We discuss the application of heat engines in different industries from three main aspects: agriculture, marine engine, and aviation. They improve our daily life and provide the required energy to the community. Thermoacoustic Heat Engine (TAHE), Liquid Air Cycle Engines (LACE), and a new class of Heat engine without the expulsion of reaction mass are introduced in this paper. Furthermore, the article will cover some futures. One is artificial intelligence, and another one is about biofuel, which helps heat engines to have higher efficiency and less pollution, and also how heat engines are involved in the next decade.
Gli stili APA, Harvard, Vancouver, ISO e altri
18

Derényi, Imre, e R. Astumian. "Efficiency of Brownian heat engines". Physical Review E 59, n. 6 (giugno 1999): R6219—R6222. http://dx.doi.org/10.1103/physreve.59.r6219.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
19

Sinitsyn, N. A. "Fluctuation relation for heat engines". Journal of Physics A: Mathematical and Theoretical 44, n. 40 (14 settembre 2011): 405001. http://dx.doi.org/10.1088/1751-8113/44/40/405001.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
20

Anderson, Warren G. "Relativistic heat engines and efficiency". Physics Letters A 223, n. 1-2 (novembre 1996): 23–27. http://dx.doi.org/10.1016/s0375-9601(96)00715-3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Grazzini, Giuseppe. "Work from irreversible heat engines". Energy 16, n. 4 (aprile 1991): 747–55. http://dx.doi.org/10.1016/0360-5442(91)90024-g.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
22

Richards, George, Randall S. Gemmen e Mark C. Williams. "Solid – state electrochemical heat engines". International Journal of Hydrogen Energy 40, n. 9 (marzo 2015): 3719–25. http://dx.doi.org/10.1016/j.ijhydene.2015.01.043.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Löffler, Michael. "Batch Processes in Heat Engines". Energy 125 (aprile 2017): 788–94. http://dx.doi.org/10.1016/j.energy.2017.02.105.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
24

Martínez, Ignacio A., Édgar Roldán, Luis Dinis e Raúl A. Rica. "Colloidal heat engines: a review". Soft Matter 13, n. 1 (2017): 22–36. http://dx.doi.org/10.1039/c6sm00923a.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
25

Hsu, S. M., J. M. Perez e C. S. Ku. "Advanced lubricants for heat engines". Journal of Synthetic Lubrication 14, n. 2 (luglio 1997): 143–56. http://dx.doi.org/10.1002/jsl.3000140204.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
26

Nuwayhid, R. Y., e F. Moukalled. "Effect of heat leak on cascaded heat engines". Energy Conversion and Management 43, n. 15 (ottobre 2002): 2067–83. http://dx.doi.org/10.1016/s0196-8904(01)00146-7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
27

Lampinen, Markku J., e Jari Vuorisalo. "Heat accumulation function and optimization of heat engines". Journal of Applied Physics 69, n. 2 (15 gennaio 1991): 597–605. http://dx.doi.org/10.1063/1.347392.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
28

Vetchanin, Evgeniy, e Valentin Tenenev. "Simulation of gas dynamics in heat engines of complex shapes". Modern science: researches, ideas, results, technologies 8, n. 2 (15 giugno 2017): 29–34. http://dx.doi.org/10.23877/ms.ts.39.004.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
29

Velidi, Gurunadh, e Chun Sang Yoo. "A Review on Flame Stabilization Technologies for UAV Engine Micro-Meso Scale Combustors: Progress and Challenges". Energies 16, n. 9 (8 maggio 2023): 3968. http://dx.doi.org/10.3390/en16093968.

Testo completo
Abstract (sommario):
Unmanned aerial vehicles (UAV)s have unique requirements that demand engines with high power-to-weight ratios, fuel efficiency, and reliability. As such, combustion engines used in UAVs are specialized to meet these requirements. There are several types of combustion engines used in UAVs, including reciprocating engines, turbine engines, and Wankel engines. Recent advancements in engine design, such as the use of ceramic materials and microscale combustion, have the potential to enhance engine performance and durability. This article explores the potential use of combustion-based engines, particularly microjet engines, as an alternative to electrically powered unmanned aerial vehicle (UAV) systems. It provides a review of recent developments in UAV engines and micro combustors, as well as studies on flame stabilization techniques aimed at enhancing engine performance. Heat recirculation methods have been proposed to minimize heat loss to the combustor walls. It has been demonstrated that employing both bluff-body stabilization and heat recirculation methods in narrow channels can significantly improve combustion efficiency. The combination of flame stabilization and heat recirculation methods has been observed to significantly improve the performance of micro and mesoscale combustors. As a result, these technologies hold great promise for enhancing the performance of UAV engines.
Gli stili APA, Harvard, Vancouver, ISO e altri
30

JONES, JOHN DEWEY. "Heat Transfer Processes in Low-Heat-Rejection Diesel Engines". Heat Transfer Engineering 8, n. 3 (gennaio 1987): 90–99. http://dx.doi.org/10.1080/01457638708962807.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
31

Odes, Ron, e Abraham Kribus. "Performance of heat engines with non-zero heat capacity". Energy Conversion and Management 65 (gennaio 2013): 108–19. http://dx.doi.org/10.1016/j.enconman.2012.08.010.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
32

Moukalled, F., R. Y. Nuwayhid e N. Noueihed. "The efficiency of endoreversible heat engines with heat leak". International Journal of Energy Research 19, n. 5 (luglio 1995): 377–89. http://dx.doi.org/10.1002/er.4440190503.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
33

Matos, Wagner Santos, Juliano de Assis Pereira, Josef Klammer, José Antonio Perrella Balestieri, Alex Mendonça Bimbato e Marcelino Pereira do Nascimento. "HEAT REJECTION AVOIDANCE IN COMBUSTION ENGINES". Brazilian Journal of Development 6, n. 7 (2020): 53369–92. http://dx.doi.org/10.34117/bjdv6n7-835.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
34

Myers, Nathan M., Jacob McCready e Sebastian Deffner. "Quantum Heat Engines with Singular Interactions". Symmetry 13, n. 6 (31 maggio 2021): 978. http://dx.doi.org/10.3390/sym13060978.

Testo completo
Abstract (sommario):
By harnessing quantum phenomena, quantum devices have the potential to outperform their classical counterparts. Here, we examine using wave function symmetry as a resource to enhance the performance of a quantum Otto engine. Previous work has shown that a bosonic working medium can yield better performance than a fermionic medium. We expand upon this work by incorporating a singular interaction that allows the effective symmetry to be tuned between the bosonic and fermionic limits. In this framework, the particles can be treated as anyons subject to Haldane’s generalized exclusion statistics. Solving the dynamics analytically using the framework of “statistical anyons”, we explore the interplay between interparticle interactions and wave function symmetry on engine performance.
Gli stili APA, Harvard, Vancouver, ISO e altri
35

Yerra, Pavan Kumar, e Chandrasekhar Bhamidipati. "Critical heat engines in massive gravity". Classical and Quantum Gravity 37, n. 20 (26 settembre 2020): 205020. http://dx.doi.org/10.1088/1361-6382/abb2d1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
36

Atchley, Anthony. "Sound waves rev up heat engines". Physics World 12, n. 8 (agosto 1999): 21–22. http://dx.doi.org/10.1088/2058-7058/12/8/27.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
37

Larsen, D. C., J. W. Adams, L. R. Johnson, A. P. S. Teotia, L. G. Hill e T. Z. Kattamis. "Ceramic Materials for Advanced Heat Engines". Journal of Engineering Materials and Technology 109, n. 1 (1 gennaio 1987): 99. http://dx.doi.org/10.1115/1.3225945.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
38

Páv, Karel, Václav Rychtář e Václav Vorel. "Heat balance in modern automotive engines". Journal of Middle European Construction and Design of Cars 10, n. 2 (1 novembre 2012): 6–13. http://dx.doi.org/10.2478/v10138-012-0007-7.

Testo completo
Abstract (sommario):
Shrnutí Tento příspěvek obsahuje informace o přerozdělení tepla v současných vozidlových spalovacích motorech. Vycházelo se z různých konstrukcí především zážehových motorů s rozdílnými zdvihovými objemy, vznětové motory jsou však také zmíněny. Je zde uveden postup výpočtu tepelné bilance motoru, stejně tak, jako obtíže spojené se získáním vstupních dat měřením. Byl navržen a ověřen empirický vztah pro výpočet tepelného toku do chladící kapaliny, který umožňuje snadné nalezení nekorektně změřených pracovních bodů motoru už v počáteční fázi automatického měřícího cyklu. Naměřené hodnoty byly srovnány s výpočtem pomocí programu GT-Power. Na závěr je uvedeno srovnání různých typů motorů s ohledem na velikost tepelného toku do chladící kapaliny
Gli stili APA, Harvard, Vancouver, ISO e altri
39

Pilgram, Sebastian, David Sánchez e Rosa López. "Quantum point contacts as heat engines". Physica E: Low-dimensional Systems and Nanostructures 74 (novembre 2015): 447–50. http://dx.doi.org/10.1016/j.physe.2015.08.003.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
40

Chakraborty, Avik, e Clifford V. Johnson. "Benchmarking black hole heat engines, II". International Journal of Modern Physics D 27, n. 16 (dicembre 2018): 1950006. http://dx.doi.org/10.1142/s0218271819500068.

Testo completo
Abstract (sommario):
We extend to nonstatic black holes our benchmarking scheme that allows for cross–comparison of the efficiencies of asymptotically AdS black holes used as working substances in heat engines. We use a circular cycle in the [Formula: see text] plane as the benchmark cycle. We study Kerr black holes in four spacetime dimensions as an example. As in the static case, we find an exact formula for the benchmark efficiency in an ideal gas-like limit, which may serve as an upper bound for rotating black hole heat engines in a thermodynamic ensemble with fixed angular velocity. We use the benchmarking scheme to compare Kerr to static black holes charged under Maxwell and Born–Infeld sectors.
Gli stili APA, Harvard, Vancouver, ISO e altri
41

Chakraborty, Avik, e Clifford V. Johnson. "Benchmarking black hole heat engines, I". International Journal of Modern Physics D 27, n. 16 (dicembre 2018): 1950012. http://dx.doi.org/10.1142/s0218271819500123.

Testo completo
Abstract (sommario):
We present the results of initiating a benchmarking scheme that allows for cross-comparison of the efficiencies of black holes used as working substances in heat engines. We use a circular cycle in the [Formula: see text] plane as the benchmark engine. We test it on Einstein–Maxwell, Gauss–Bonnet and Born–Infeld black holes. Also, we derive a new and surprising exact result for the efficiency of a special “ideal gas” system to which all the black holes asymptote.
Gli stili APA, Harvard, Vancouver, ISO e altri
42

Arcoumanis, C., P. Cutter e D. S. Whitelaw. "Heat Transfer Processes in Diesel Engines". Chemical Engineering Research and Design 76, n. 2 (febbraio 1998): 124–32. http://dx.doi.org/10.1205/026387698524695.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
43

Wei, Shao-Wen, e Yu-Xiao Liu. "Charged AdS black hole heat engines". Nuclear Physics B 946 (settembre 2019): 114700. http://dx.doi.org/10.1016/j.nuclphysb.2019.114700.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
44

Long, Rui, e Wei Liu. "Ecological optimization for general heat engines". Physica A: Statistical Mechanics and its Applications 434 (settembre 2015): 232–39. http://dx.doi.org/10.1016/j.physa.2015.04.016.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
45

Senft, J. R. "Mechanical efficiency of kinematic heat engines". Journal of the Franklin Institute 324, n. 2 (gennaio 1987): 273–90. http://dx.doi.org/10.1016/0016-0032(87)90066-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
46

Senft, J. R. "Pressurization effects in kinematic heat engines". Journal of the Franklin Institute 328, n. 2-3 (gennaio 1991): 255–79. http://dx.doi.org/10.1016/0016-0032(91)90034-z.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
47

Chen, Lingen, Fengrui Sun e Chih Wu. "Thermo-economics for endoreversible heat-engines". Applied Energy 81, n. 4 (agosto 2005): 388–96. http://dx.doi.org/10.1016/j.apenergy.2004.09.008.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
48

Gordon, J. M. "On optimized solar-driven heat engines". Solar Energy 40, n. 5 (1988): 457–61. http://dx.doi.org/10.1016/0038-092x(88)90100-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
49

Boehm, R. F. "Maximum performance of solar heat engines". Applied Energy 23, n. 4 (gennaio 1986): 281–96. http://dx.doi.org/10.1016/0306-2619(86)90012-7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
50

Flint, R. F. "Ceramic materials for advanced heat engines". Materials & Design 7, n. 4 (luglio 1986): 215. http://dx.doi.org/10.1016/0261-3069(86)90139-1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia