Segui questo link per vedere altri tipi di pubblicazioni sul tema: Group theory.

Articoli di riviste sul tema "Group theory"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Group theory".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.

1

Berestovskii, Valera, e Conrad Plaut. "Covering group theory for compact groups". Journal of Pure and Applied Algebra 161, n. 3 (luglio 2001): 255–67. http://dx.doi.org/10.1016/s0022-4049(00)00105-5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Berestovskii, Valera, e Conrad Plaut. "Covering group theory for topological groups". Topology and its Applications 114, n. 2 (luglio 2001): 141–86. http://dx.doi.org/10.1016/s0166-8641(00)00031-6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

BROWN, F., e N. G. MAROUDAS. "Group theory". Nature 348, n. 6303 (dicembre 1990): 669. http://dx.doi.org/10.1038/348669b0.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Porter, T. "Undergraduate Projects in Group Theory: Automorphism Groups". Irish Mathematical Society Bulletin 0016 (1986): 69–72. http://dx.doi.org/10.33232/bims.0016.69.72.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Gordon, Gary. "USING WALLPAPER GROUPS TO MOTIVATE GROUP THEORY". PRIMUS 6, n. 4 (gennaio 1996): 355–65. http://dx.doi.org/10.1080/10511979608965838.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Berestovskii, Valera, e Conrad Plaut. "Covering group theory for locally compact groups". Topology and its Applications 114, n. 2 (luglio 2001): 187–99. http://dx.doi.org/10.1016/s0166-8641(00)00032-8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Xue, Zeqi. "Group Theory and Ring Theory". Journal of Physics: Conference Series 2386, n. 1 (1 dicembre 2022): 012024. http://dx.doi.org/10.1088/1742-6596/2386/1/012024.

Testo completo
Abstract (sommario):
Abstract Group theory is an important theory in abstract algebra. A ring is a kind of algebraic system with two operations (addition and multiplication). It has a deep relationship with groups, especially with the Abelian group. In this essay, the ring and the residual class ring will be talked about. Firstly, this passage is aim to talk about some basic knowledge about the ring which will let readers have a basic understanding of a ring. Then this passage will discuss the residual class ring and subring of the residual class ring of modulo. Some concepts about the ring are also mentioned, such as the centre of the ring, the identity of the ring, the classification of a ring, the residual class ring, the field and the zero divisors. The definitions of mathematical terms mentioned before are stated, as well as some examples of the part of those terms are given. In this passage, there are also some lemmas which are the properties of ring and subring. Future studies of rings and subrings can focus on the application of physics.
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Wang, Mingshen. "Group Theory in Number Theory". Theoretical and Natural Science 5, n. 1 (25 maggio 2023): 9–13. http://dx.doi.org/10.54254/2753-8818/5/20230254.

Testo completo
Abstract (sommario):
The theory of groups exists in many fields of mathematics and has made a great impact on many fields of mathematics. In this article, this paper first introduces the history of group theory and elementary number theory, and then lists the definitions of group, ring, field and the most basic prime and integer and divisor in number theory that need to be used in this article. Then from the definitions, step by step, Euler's theorem, Bzout's lemma, Wilson's theorem and Fermat's Little theorem in elementary number theory are proved by means of definitions of group theory, cyclic groups, and even polynomials over domains. Finally, some concluding remarks are made. Many number theory theorems can be proved directly by the method of group theory without the action of tricks in number theory. Number theory is the thinking of certain special groups (e.g., (Z,+),(Z,)), so the methods of group theory work well inside number theory.
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Virginia Brabender. "Chaos Theory and Group Psychotherapy 15 Years Later". Group 40, n. 1 (2016): 9. http://dx.doi.org/10.13186/group.40.1.0009.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Denton, Brian, e Michael Aschbacher. "Finite Group Theory". Mathematical Gazette 85, n. 504 (novembre 2001): 546. http://dx.doi.org/10.2307/3621802.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
11

Eick, Bettina, Gerhard Hiß, Derek Holt e Eamonn O’Brien. "Computational Group Theory". Oberwolfach Reports 13, n. 3 (2016): 2123–69. http://dx.doi.org/10.4171/owr/2016/37.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
12

Abért, Miklós, Damien Gaboriau e Andreas Thom. "Measured Group Theory". Oberwolfach Reports 13, n. 3 (2016): 2347–97. http://dx.doi.org/10.4171/owr/2016/41.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
13

Clay, Matt. "Geometric Group Theory". Notices of the American Mathematical Society 69, n. 10 (1 novembre 2022): 1. http://dx.doi.org/10.1090/noti2572.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
14

Kida, Yoshikata. "Ergodic group theory". Sugaku Expositions 35, n. 1 (7 aprile 2022): 103–26. http://dx.doi.org/10.1090/suga/470.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
15

Whitfield, John. "Collaboration: Group theory". Nature 455, n. 7214 (ottobre 2008): 720–23. http://dx.doi.org/10.1038/455720a.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
16

Keurentjes, Arjan. "Oxidation group theory". Classical and Quantum Gravity 20, n. 12 (20 maggio 2003): S525—S531. http://dx.doi.org/10.1088/0264-9381/20/12/319.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
17

Hempel, Nadja. "Almost group theory". Journal of Algebra 556 (agosto 2020): 169–224. http://dx.doi.org/10.1016/j.jalgebra.2020.03.001.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
18

Eick, Bettina, Derek Holt, Gabriele Nebe e Eamonn O'Brien. "Computational Group Theory". Oberwolfach Reports 18, n. 3 (25 novembre 2022): 2027–87. http://dx.doi.org/10.4171/owr/2021/38.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
19

Roush, F. W. "Computational group theory". Mathematical Social Sciences 11, n. 1 (febbraio 1986): 93–94. http://dx.doi.org/10.1016/0165-4896(86)90008-9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
20

Sury, B. "Combinatorial group theory". Resonance 1, n. 11 (novembre 1996): 42–50. http://dx.doi.org/10.1007/bf02835212.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Loewenstein, Sophie Freud. "Group Theory in an Experiential Group". Social Work with Groups 8, n. 1 (20 marzo 1985): 25–40. http://dx.doi.org/10.1300/j009v08n01_04.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
22

Birget, Jean-Camille, e John Rhodes. "Group theory via global semigroup theory". Journal of Algebra 120, n. 2 (febbraio 1989): 284–300. http://dx.doi.org/10.1016/0021-8693(89)90199-3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Knapp, A. W., Andrew Baker e Wulf Rossmann. "Matrix Groups: An Introduction to Lie Group Theory". American Mathematical Monthly 110, n. 5 (maggio 2003): 446. http://dx.doi.org/10.2307/3647845.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
24

Eklof, Paul C. "Set Theory Generated by Abelian Group Theory". Bulletin of Symbolic Logic 3, n. 1 (marzo 1997): 1–16. http://dx.doi.org/10.2307/421194.

Testo completo
Abstract (sommario):
Introduction. This survey is intended to introduce to logicians some notions, methods and theorems in set theory which arose—largely through the work of Saharon Shelah—out of (successful) attempts to solve problems in abelian group theory, principally the Whitehead problem and the closely related problem of the existence of almost free abelian groups. While Shelah's first independence result regarding the Whitehead problem used established set-theoretical methods (discussed below), his later work required new ideas; it is on these that we focus. We emphasize the nature of the new ideas and the historical context in which they arose, and we do not attempt to give precise technical definitions in all cases, nor to include a comprehensive survey of the algebraic results.In fact, very little algebraic background is needed beyond the definitions of group and group homomorphism. Unless otherwise specified, we will use the word “group” to refer to an abelian group, that is, the group operation is commutative. The group operation will be denoted by +, the identity element by 0, and the inverse of a by −a. We shall use na as an abbreviation for a + a + … + a [n times] if n is positive, and na = (−n)(−a) if n is negative.
Gli stili APA, Harvard, Vancouver, ISO e altri
25

Burn, Bob, Walter Ledermann e Alan J. Weir. "Introduction to Group Theory". Mathematical Gazette 81, n. 491 (luglio 1997): 332. http://dx.doi.org/10.2307/3619240.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
26

Canals, B., e H. Schober. "Introduction to group theory". EPJ Web of Conferences 22 (2012): 00004. http://dx.doi.org/10.1051/epjconf/20122200004.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
27

Alperin, J. L. "Book Review: Group theory." Bulletin of the American Mathematical Society 17, n. 2 (1 ottobre 1987): 339–41. http://dx.doi.org/10.1090/s0273-0979-1987-15583-2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
28

Ben Geloun, Joseph. "Classical group field theory". Journal of Mathematical Physics 53, n. 2 (febbraio 2012): 022901. http://dx.doi.org/10.1063/1.3682651.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
29

Sternberg, Shlomo, e Meinhard E. Mayer. "Group Theory and Physics". Physics Today 48, n. 6 (giugno 1995): 62–63. http://dx.doi.org/10.1063/1.2808071.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
30

Martin, A. D. "Group Theory in Physics". Physics Bulletin 37, n. 10 (ottobre 1986): 426. http://dx.doi.org/10.1088/0031-9112/37/10/021.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
31

Thomas, C. B. "GROUP THEORY AND PHYSICS". Bulletin of the London Mathematical Society 29, n. 1 (gennaio 1997): 119–20. http://dx.doi.org/10.1112/s0024609396281676.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
32

Sternberg, Shlomo, e Eugene Golowich. "Group Theory and Physics". American Journal of Physics 63, n. 6 (giugno 1995): 573–74. http://dx.doi.org/10.1119/1.17874.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
33

SAPIR, MARK V. "SOME GROUP THEORY PROBLEMS". International Journal of Algebra and Computation 17, n. 05n06 (agosto 2007): 1189–214. http://dx.doi.org/10.1142/s0218196707003925.

Testo completo
Abstract (sommario):
This is a survey of some problems in geometric group theory that I find interesting. The problems are from different areas of group theory. Each section is devoted to problems in one area. It contains an introduction where I give some necessary definitions and motivations, problems and some discussions of them. For each problem, I try to mention the author. If the author is not given, the problem, to the best of my knowledge, was formulated by me first.
Gli stili APA, Harvard, Vancouver, ISO e altri
34

Bondoni, Davide. "Schröder and group theory". Lettera Matematica 2, n. 3 (6 agosto 2014): 129–32. http://dx.doi.org/10.1007/s40329-014-0059-8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
35

Gurau, Razvan. "Colored Group Field Theory". Communications in Mathematical Physics 304, n. 1 (8 marzo 2011): 69–93. http://dx.doi.org/10.1007/s00220-011-1226-9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
36

Geoghegan, Ross. "CURVATURE AND GROUP THEORY". Contributions, Section of Natural, Mathematical and Biotechnical Sciences 38, n. 2 (20 dicembre 2017): 147. http://dx.doi.org/10.20903/csnmbs.masa.2017.38.2.110.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
37

Tang, Dongxian, Zichang Wang e Bangning Yue. "Applications of Group Theory". Journal of Physics: Conference Series 2381, n. 1 (1 dicembre 2022): 012110. http://dx.doi.org/10.1088/1742-6596/2381/1/012110.

Testo completo
Abstract (sommario):
Abstract Groups play a fundamental role in Abstract Algebra: many algebraic structures, including rings, fields, and modules, can be seen as formed by adding new operations and axioms based on groups. Researchers often use group theory to explain many kinds of phenomena. In recent years, group theory has been introduced into crystallography to further explore the macroscopic symmetry of crystals from a mathematical point of view. In this paper, the applications of group theory in crystallography and magic cubic will be discussed. Basic definitions and models of these fields are demonstrated. A finite group is a group with a finite number of elements, which are the important contents of group theory. Besides, this paper proves that n−1 elements in a n order group can completely decide the nth element and gives a method of the nth element in a commutative group of order n. The analysis suggests that the research method of group theory has an important influence on other subjects.
Gli stili APA, Harvard, Vancouver, ISO e altri
38

Leyton, Michael. "Group Theory and Architecture". Nexus Network Journal 3, n. 2 (settembre 2001): 39–58. http://dx.doi.org/10.1007/s00004-001-0022-9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
39

Becker, Oren, Alexander Lubotzky e Jonathan Mosheiff. "Testability in group theory". Israel Journal of Mathematics 256, n. 1 (settembre 2023): 61–90. http://dx.doi.org/10.1007/s11856-023-2503-y.

Testo completo
Abstract (sommario):
AbstractThis paper is a journal counterpart to [5], in which we initiate the study of property testing problems concerning a finite system of relations E between permutations, generalizing the study of stability in permutations. To every such system E, a group Γ = ΓE is associated and the testability of E depends only on Γ (just like in Galois theory, where the solvability of a polynomial is determined by the solvability of the associated group). This leads to the notion of testable groups, and, more generally, Benjamini–Schramm rigid groups. The paper presents an ensemble of tools to check if a given group Γ is testable/BS-rigid or not.
Gli stili APA, Harvard, Vancouver, ISO e altri
40

Jensen, David, e Kate Ponto. "Group Theory via Quilts". Mitteilungen der Deutschen Mathematiker-Vereinigung 31, n. 4 (9 dicembre 2023): 218–19. http://dx.doi.org/10.1515/dmvm-2023-0072.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
41

Morlin, Fernando Vinícius, Andrea Piga Carboni e Daniel Martins. "Synthesis of Assur groups via group and matroid theory". Mechanism and Machine Theory 184 (giugno 2023): 105279. http://dx.doi.org/10.1016/j.mechmachtheory.2023.105279.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
42

Opolka, H. "Group Extensions and Cohomology Groups". Journal of Algebra 156, n. 1 (aprile 1993): 178–82. http://dx.doi.org/10.1006/jabr.1993.1068.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
43

Gonçalves, J. Z., e D. S. Passman. "Linear groups and group rings". Journal of Algebra 295, n. 1 (gennaio 2006): 94–118. http://dx.doi.org/10.1016/j.jalgebra.2005.02.009.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
44

Arthur A. Gray. "Caring Wins Out Over Theory: A Response to Walter Stone's “Thinking About Our Work”". Group 38, n. 3 (2014): 251. http://dx.doi.org/10.13186/group.38.3.0251.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
45

Victor L. Schermer. "Back to the Future of Group Therapy Theory: 15 Years Into the New Millennium". Group 40, n. 1 (2016): 53. http://dx.doi.org/10.13186/group.40.1.0053.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
46

Capitão, Claudio Garcia. "Freud’s Theory and the Group Mind Theory: Formulations". Open Journal of Medical Psychology 03, n. 01 (2014): 24–35. http://dx.doi.org/10.4236/ojmp.2014.31003.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
47

Mj, Mahan. "Cannon–Thurston maps in Kleinian groups and geometric group theory". Surveys in Differential Geometry 25, n. 1 (2020): 281–318. http://dx.doi.org/10.4310/sdg.2020.v25.n1.a8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
48

Lubotzky, Alexander, e Chen Meiri. "Sieve methods in group theory I: Powers in linear groups". Journal of the American Mathematical Society 25, n. 4 (2012): 1119–48. http://dx.doi.org/10.1090/s0894-0347-2012-00736-x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
49

Fok, Chi-Kwong. "KR-theory of compact Lie groups with group anti-involutions". Topology and its Applications 197 (gennaio 2016): 50–59. http://dx.doi.org/10.1016/j.topol.2015.10.008.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
50

Mikhailov, Roman, e Jie Wu. "Combinatorial group theory and the homotopy groups of finite complexes". Geometry & Topology 17, n. 1 (7 marzo 2013): 235–72. http://dx.doi.org/10.2140/gt.2013.17.235.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia