Segui questo link per vedere altri tipi di pubblicazioni sul tema: Group actions.

Articoli di riviste sul tema "Group actions"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Group actions".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.

1

Tsai, Jessica Chia-Chin, Natalie Sebanz e Günther Knoblich. "The GROOP effect: Groups mimic group actions". Cognition 118, n. 1 (gennaio 2011): 135–40. http://dx.doi.org/10.1016/j.cognition.2010.10.007.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

CARBONE, LISA, e ELIYAHU RIPS. "RECONSTRUCTING GROUP ACTIONS". International Journal of Algebra and Computation 23, n. 02 (marzo 2013): 255–323. http://dx.doi.org/10.1142/s021819671340002x.

Testo completo
Abstract (sommario):
We give a general structure theory for reconstructing non-trivial group actions on sets without any further assumptions on the group, the action, or the set on which the group acts. Using certain "local data" [Formula: see text] from the action we build a group [Formula: see text] of the data and a space [Formula: see text] with an action of [Formula: see text] on [Formula: see text] that arise naturally from the data [Formula: see text]. We use these to obtain an approximation to the original group G, the original space X and the original action G × X → X. The data [Formula: see text] is distinguished by the property that it may be chosen from the action locally. For a large enough set of local data [Formula: see text], our definition of [Formula: see text] in terms of generators and relations allows us to obtain a presentation for the group G. We demonstrate this on several examples. When the local data [Formula: see text] is chosen from a graph of groups, the group [Formula: see text] is the fundamental group of the graph of groups and the space [Formula: see text] is the universal covering tree of groups. For general non-properly discontinuous group actions our local data allows us to imitate a fundamental domain, quotient space and universal covering for the quotient. We exhibit this on a non-properly discontinuous free action on ℝ. For a certain class of non-properly discontinuous group actions on the upper half-plane, we use our local data to build a space on which the group acts discretely and cocompactly. Our combinatorial approach to reconstructing abstract group actions on sets is a generalization of the Bass–Serre theory for reconstructing group actions on trees. Our results also provide a generalization of the notion of developable complexes of groups by Haefliger.
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Müller, Gerd. "Deformations of reductive group actions". Mathematical Proceedings of the Cambridge Philosophical Society 106, n. 1 (luglio 1989): 77–88. http://dx.doi.org/10.1017/s0305004100067992.

Testo completo
Abstract (sommario):
Consider actions of a reductive complex Lie group G on an analytic space germ (X, 0). In a previous paper [16] we proved that such an action is determined uniquely (up to conjugation with an automorphism of (X, 0)) by the induced action of G on the tangent space of (X, 0). Here it will be shown that every deformation of such an action, parametrized holomorphically by a reduced analytic space germ, is trivial, i.e. can be obtained from the given action by conjugation with a family of automorphisms of (X, 0) depending holomorphically on the parameter. (For a more precise formulation in terms of actions on analytic ℂ-algebras, see Theorem 2 below. An analogue for actions on formal ℂ-algebras is given there too.)
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Yalçin, Ergün. "Group actions and group extensions". Transactions of the American Mathematical Society 352, n. 6 (24 febbraio 2000): 2689–700. http://dx.doi.org/10.1090/s0002-9947-00-02485-5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Kolganova, Alla. "Chaotic group actions". Bulletin of the Australian Mathematical Society 56, n. 1 (agosto 1997): 165–67. http://dx.doi.org/10.1017/s0004972700030847.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Wasserman, Arthur G. "Simplifying group actions". Topology and its Applications 75, n. 1 (gennaio 1997): 13–31. http://dx.doi.org/10.1016/s0166-8641(96)00084-3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Ben Yaacov, Itaï, e Julien Melleray. "Isometrisable group actions". Proceedings of the American Mathematical Society 144, n. 9 (17 febbraio 2016): 4081–88. http://dx.doi.org/10.1090/proc/13018.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Shi, Enhui, Lizhen Zhou e Youcheng Zhou. "Chaotic group actions". Applied Mathematics-A Journal of Chinese Universities 18, n. 1 (marzo 2003): 59–63. http://dx.doi.org/10.1007/s11766-003-0084-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Rosenblatt, Joseph. "Ergodic group actions". Archiv der Mathematik 47, n. 3 (settembre 1986): 263–69. http://dx.doi.org/10.1007/bf01192003.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Oh, Ju-Mok. "Fuzzified group actions". Soft Computing 23, n. 24 (7 agosto 2019): 12981–89. http://dx.doi.org/10.1007/s00500-019-04261-3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
11

Fedorova, M. "Faithful group actions and Schreier graphs". Carpathian Mathematical Publications 9, n. 2 (3 gennaio 2018): 202–7. http://dx.doi.org/10.15330/cmp.9.2.202-207.

Testo completo
Abstract (sommario):
Each action of a finitely generated group on a set uniquely defines a labelled directed graph called the Schreier graph of the action. Schreier graphs are used mainly as a tool to establish geometrical and dynamical properties of corresponding group actions. In particilar, they are widely used in order to check amenability of different classed of groups. In the present paper Schreier graphs are utilized to construct new examples of faithful actions of free products of groups. Using Schreier graphs of group actions a sufficient condition for a group action to be faithful is presented. This result is applied to finite automaton actions on spaces of words i.e. actions defined by finite automata over finite alphabets. It is shown how to construct new faithful automaton presentations of groups upon given such a presentation. As an example a new countable series of faithful finite automaton presentations of free products of finite groups is constructed. The obtained results can be regarded as another way to construct new faithful actions of groups as soon as at least one such an action is provided.
Gli stili APA, Harvard, Vancouver, ISO e altri
12

Chiswell, I. M. "Minimal group actions on Λ-trees". Proceedings of the Royal Society of Edinburgh: Section A Mathematics 128, n. 1 (1998): 23–36. http://dx.doi.org/10.1017/s030821050002713x.

Testo completo
Abstract (sommario):
We consider the existence and uniqueness of minimal invariant subtrees for abelian actions of groups on Λ-trees, and whether or not a minimal action is determined up to isomorphism by the hyperbolic length function. The main emphasis is on actions of end type. For a trivial action of end type, there is no minimal invariant subtree. However, if a finitely generated group has an action of end type, the action is nontrivial and there is a unique minimal invariant subtree. There are examples of infinitely generated groups with a nontrivial action of end type for which there is no minimal invariant subtree. These results can be used to study actions of cut type.
Gli stili APA, Harvard, Vancouver, ISO e altri
13

MEGRELISHVILI, MICHAEL. "Free Topological Groups over (Semi) Group Actions". Annals of the New York Academy of Sciences 788, n. 1 General Topol (maggio 1996): 164–69. http://dx.doi.org/10.1111/j.1749-6632.1996.tb36808.x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
14

Kennison, John F. "Pro-group actions and fundamental pro-groups". Journal of Pure and Applied Algebra 66, n. 2 (ottobre 1990): 185–218. http://dx.doi.org/10.1016/0022-4049(90)90084-u.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
15

Johnson, F. E. A. "Extending group actions by finite groups. I". Topology 31, n. 2 (aprile 1992): 407–20. http://dx.doi.org/10.1016/0040-9383(92)90030-l.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
16

DEELEY, ROBIN J., e KAREN R. STRUNG. "Group actions on Smale space -algebras". Ergodic Theory and Dynamical Systems 40, n. 9 (10 aprile 2019): 2368–98. http://dx.doi.org/10.1017/etds.2019.11.

Testo completo
Abstract (sommario):
Group actions on a Smale space and the actions induced on the $\text{C}^{\ast }$-algebras associated to such a dynamical system are studied. We show that an effective action of a discrete group on a mixing Smale space produces a strongly outer action on the homoclinic algebra. We then show that for irreducible Smale spaces, the property of finite Rokhlin dimension passes from the induced action on the homoclinic algebra to the induced actions on the stable and unstable $\text{C}^{\ast }$-algebras. In each of these cases, we discuss the preservation of properties (such as finite nuclear dimension, ${\mathcal{Z}}$-stability, and classification by Elliott invariants) in the resulting crossed products.
Gli stili APA, Harvard, Vancouver, ISO e altri
17

Ramsay, Arlan. "Measurable group actions are essentially Borel actions". Israel Journal of Mathematics 51, n. 4 (dicembre 1985): 339–46. http://dx.doi.org/10.1007/bf02764724.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
18

Suksumran, Teerapong. "Gyrogroup actions: A generalization of group actions". Journal of Algebra 454 (maggio 2016): 70–91. http://dx.doi.org/10.1016/j.jalgebra.2015.12.033.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
19

Abbott, Carolyn, David Hume e Denis Osin. "Extending group actions on metric spaces". Journal of Topology and Analysis 12, n. 03 (1 ottobre 2018): 625–65. http://dx.doi.org/10.1142/s1793525319500584.

Testo completo
Abstract (sommario):
We address the following natural extension problem for group actions: Given a group [Formula: see text], a subgroup [Formula: see text], and an action of [Formula: see text] on a metric space, when is it possible to extend it to an action of the whole group [Formula: see text] on a (possibly different) metric space? When does such an extension preserve interesting properties of the original action of [Formula: see text]? We begin by formalizing this problem and present a construction of an induced action which behaves well when [Formula: see text] is hyperbolically embedded in [Formula: see text]. Moreover, we show that induced actions can be used to characterize hyperbolically embedded subgroups. We also obtain some results for elementary amenable groups.
Gli stili APA, Harvard, Vancouver, ISO e altri
20

Sharma, Ram Parkash, Anu e Nirmal Singh. "PARTIAL GROUP ACTIONS ON SEMIALGEBRAS". Asian-European Journal of Mathematics 05, n. 04 (dicembre 2012): 1250060. http://dx.doi.org/10.1142/s179355711250060x.

Testo completo
Abstract (sommario):
For defining a K-semialgebra A, we use Katsov's tensor product which makes the category K-Smod monoidal. Further, if A is a K-semialgebra then AΔ is a KΔ-algebra and A embeds in AΔ. The subtractive and strong partial actions of a group are defined on A. A subtractive partial action α of a group G on A can be extended to a partial action of G on AΔ which helps in globalization of α. A strong partial action on A has a unique subtractive globalization. We also discuss the associativity of the skew group semiring A ×α G.
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Gonçalves, Daniel. "Simplicity of Partial Skew Group Rings of Abelian Groups". Canadian Mathematical Bulletin 57, n. 3 (1 settembre 2014): 511–19. http://dx.doi.org/10.4153/cmb-2014-011-1.

Testo completo
Abstract (sommario):
AbstractLet A be a ring with local units, E a set of local units for A, G an abelian group, and α a partial action of G by ideals of A that contain local units. We show that A*αG is simple if and only if A is G-simple and the center of the corner eδ0(A*αGe)eδ0 is a field for all e ∊ E. We apply the result to characterize simplicity of partial skew group rings in two cases, namely for partial skew group rings arising from partial actions by clopen subsets of a compact set and partial actions on the set level.
Gli stili APA, Harvard, Vancouver, ISO e altri
22

Iyer, Ganesh, e Hema Yoganarasimhan. "Strategic Polarization in Group Interactions". Journal of Marketing Research 58, n. 4 (22 giugno 2021): 782–800. http://dx.doi.org/10.1177/00222437211016389.

Testo completo
Abstract (sommario):
The authors study the phenomenon of strategic group polarization, in which members take more extreme actions than their preferences. The analysis is relevant for a broad range of formal and informal group settings, including social media, online platforms, sales teams, corporate and academic committees, and political action committees. In the model, agents with private preferences choose a public action (voice opinions), and the mean of their actions represents the group’s realized outcome. The agents face a trade-off between influencing the group decision and truth-telling. In a simultaneous-move game, agents strategically shade their actions toward the extreme. The strategic group influence motive can create substantial polarization in actions and group decisions even when the preferences are relatively moderate. Compared with a simultaneous game, a randomized-sequential-actions game lowers polarization when agents’ preferences are relatively similar. Sequential actions can even lead to moderation if the later agents have moderate preferences. Endogenizing the order of moves (through a first-price sealed-bid auction) always increases polarization, but it is also welfare enhancing. These findings can help group leaders, firms, and platforms design mechanisms that moderate polarization, such as the choice of speaking order, the group size, and the knowledge members have of others’ preferences and actions.
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Kanai, Masahiko. "Rigidity of group actions". Séminaire de théorie spectrale et géométrie 15 (1997): 203–5. http://dx.doi.org/10.5802/tsg.192.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
24

Huru, Hilja L., e Valentin V. Lychagin. "Quantizations of Group Actions". Journal of Generalized Lie Theory and Applications 6 (2012): 1–15. http://dx.doi.org/10.4303/jglta/g120403.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
25

Greenberg, Peter. "Pseudogroups from Group Actions". American Journal of Mathematics 109, n. 5 (ottobre 1987): 893. http://dx.doi.org/10.2307/2374493.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
26

Dydak, Jerzy. "Overlays and group actions". Topology and its Applications 207 (luglio 2016): 22–32. http://dx.doi.org/10.1016/j.topol.2016.03.031.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
27

Blanc, David, e Debasis Sen. "Realizing homotopy group actions". Bulletin of the Belgian Mathematical Society - Simon Stevin 21, n. 4 (ottobre 2014): 685–710. http://dx.doi.org/10.36045/bbms/1414091009.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
28

Isaacs, I. M. "Group actions and orbits". Archiv der Mathematik 98, n. 5 (8 marzo 2012): 399–401. http://dx.doi.org/10.1007/s00013-012-0364-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
29

McCullough, Darryl, Andy Miller e Bruno Zimmermann. "Group Actions on Handlebodies". Proceedings of the London Mathematical Society s3-59, n. 2 (settembre 1989): 373–416. http://dx.doi.org/10.1112/plms/s3-59.2.373.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
30

Fisher, David. "Deformations of group actions". Transactions of the American Mathematical Society 360, n. 01 (1 gennaio 2008): 491–506. http://dx.doi.org/10.1090/s0002-9947-07-04372-3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
31

MELNIKOV, ALEXANDER, e ANTONIO MONTALBÁN. "COMPUTABLE POLISH GROUP ACTIONS". Journal of Symbolic Logic 83, n. 2 (giugno 2018): 443–60. http://dx.doi.org/10.1017/jsl.2017.68.

Testo completo
Abstract (sommario):
AbstractUsing methods from computable analysis, we establish a new connection between two seemingly distant areas of logic: computable structure theory and invariant descriptive set theory. We extend several fundamental results of computable structure theory to the more general setting of topological group actions. As we will see, the usual action of ${S_\infty }$ on the space of structures in a given language is effective in a certain algorithmic sense that we need, and ${S_\infty }$ itself carries a natural computability structure (to be defined). Among other results, we give a sufficient condition for an orbit under effective ${\cal G}$-action of a computable Polish ${\cal G}$ to split into infinitely many disjoint effective orbits. Our results are not only more general than the respective results in computable structure theory, but they also tend to have proofs different from (and sometimes simpler than) the previously known proofs of the respective prototype results.
Gli stili APA, Harvard, Vancouver, ISO e altri
32

Re, Riccardo. "Supersingularity from group actions". Mathematische Nachrichten 281, n. 4 (aprile 2008): 575–81. http://dx.doi.org/10.1002/mana.200510626.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
33

Puppe, V. "Group Actions and Codes". Canadian Journal of Mathematics 53, n. 1 (1 febbraio 2001): 212–24. http://dx.doi.org/10.4153/cjm-2001-009-0.

Testo completo
Abstract (sommario):
AbstractA 2-action with “maximal number of isolated fixed points” (i.e., with only isolated fixed points such that dimk(⊕iHi (M; k)) = |M2|, k = ) on a 3-dimensional, closed manifold determines a binary self-dual code of length = . In turn this code determines the cohomology algebra H*(M; k) and the equivariant cohomology . Hence, from results on binary self-dual codes one gets information about the cohomology type of 3-manifolds which admit involutions with maximal number of isolated fixed points. In particular, “most” cohomology types of closed 3-manifolds do not admit such involutions. Generalizations of the above result are possible in several directions, e.g., one gets that “most” cohomology types (over ) of closed 3-manifolds do not admit a non-trivial involution.
Gli stili APA, Harvard, Vancouver, ISO e altri
34

Fauntleroy, Amassa. "Unipotent group actions: corrections". Journal of Pure and Applied Algebra 50, n. 2 (febbraio 1988): 209–10. http://dx.doi.org/10.1016/0022-4049(88)90116-8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
35

Nowak, Piotr W. "Isoperimetry of group actions". Advances in Mathematics 219, n. 1 (settembre 2008): 1–26. http://dx.doi.org/10.1016/j.aim.2008.04.012.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
36

Radcliffe, A. J., e A. D. Scott. "Reconstructing under Group Actions". Graphs and Combinatorics 22, n. 3 (novembre 2006): 399–419. http://dx.doi.org/10.1007/s00373-006-0675-y.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
37

Babson, Eric, e Dmitry N. Kozlov. "Group actions on posets". Journal of Algebra 285, n. 2 (marzo 2005): 439–50. http://dx.doi.org/10.1016/j.jalgebra.2001.07.002.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
38

Delucchi, Emanuele, e Sonja Riedel. "Group actions on semimatroids". Advances in Applied Mathematics 95 (aprile 2018): 199–270. http://dx.doi.org/10.1016/j.aam.2017.11.001.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
39

Derksen, Harm, e Frank Kutzschebauch. "Nonlinearizable holomorphic group actions". Mathematische Annalen 311, n. 1 (1 maggio 1998): 41–53. http://dx.doi.org/10.1007/s002080050175.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
40

Hoshi, Akinari, e Ming-chang Kang. "Twisted symmetric group actions". Pacific Journal of Mathematics 248, n. 2 (1 dicembre 2010): 285–304. http://dx.doi.org/10.2140/pjm.2010.248.285.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
41

Zimmer, Robert J. "Groups generating transversals to semisimple lie group actions". Israel Journal of Mathematics 73, n. 2 (giugno 1991): 151–59. http://dx.doi.org/10.1007/bf02772946.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
42

Br�stle, T., G. R�hrle e L. Hille. "Finiteness for parabolic group actions in classical groups". Archiv der Mathematik 76, n. 2 (1 febbraio 2001): 81–87. http://dx.doi.org/10.1007/s000130050545.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
43

Humphries, Stephen P. "Finite Hurwitz braid group actions for Artin groups". Israel Journal of Mathematics 143, n. 1 (dicembre 2004): 189–222. http://dx.doi.org/10.1007/bf02803499.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
44

Wilking, Burkhard. "Rigidity of group actions on solvable Lie groups". Mathematische Annalen 317, n. 2 (1 giugno 2000): 195–237. http://dx.doi.org/10.1007/s002089900091.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
45

Tamminga, Allard, e Hein Duijf. "COLLECTIVE OBLIGATIONS, GROUP PLANS AND INDIVIDUAL ACTIONS". Economics and Philosophy 33, n. 2 (23 novembre 2016): 187–214. http://dx.doi.org/10.1017/s0266267116000213.

Testo completo
Abstract (sommario):
Abstract:If group members aim to fulfil a collective obligation, they must act in such a way that the composition of their individual actions amounts to a group action that fulfils the collective obligation. We study a strong sense of joint action in which the members of a group design and then publicly adopt a group plan that coordinates the individual actions of the group members. We characterize the conditions under which a group plan successfully coordinates the group members’ individual actions, and study how the public adoption of a plan changes the context in which individual agents make a decision about what to do.
Gli stili APA, Harvard, Vancouver, ISO e altri
46

Kamber, Franz W., e Peter W. Michor. "Completing Lie algebra actions to Lie group actions". Electronic Research Announcements of the American Mathematical Society 10, n. 1 (18 febbraio 2004): 1–10. http://dx.doi.org/10.1090/s1079-6762-04-00124-6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
47

KELLENDONK, J., e MARK V. LAWSON. "PARTIAL ACTIONS OF GROUPS". International Journal of Algebra and Computation 14, n. 01 (febbraio 2004): 87–114. http://dx.doi.org/10.1142/s0218196704001657.

Testo completo
Abstract (sommario):
A partial action of a group G on a set X is a weakening of the usual notion of a group action: the function G×X→X that defines a group action is replaced by a partial function; in addition, the existence of g·(h·x) implies the existence of (gh)·x, but not necessarily conversely. Such partial actions are extremely widespread in mathematics, and the main aim of this paper is to prove two basic results concerning them. First, we obtain an explicit description of Exel's universal inverse semigroup [Formula: see text], which has the property that partial actions of the group G give rise to actions of the inverse semigroup [Formula: see text]. We apply this result to the theory of graph immersions. Second, we prove that each partial group action is the restriction of a universal global group action. We describe some applications of this result to group theory and the theory of E-unitary inverse semigroups.
Gli stili APA, Harvard, Vancouver, ISO e altri
48

DANILENKO, ALEXANDRE I. "Mixing actions of the Heisenberg group". Ergodic Theory and Dynamical Systems 34, n. 4 (21 gennaio 2013): 1142–67. http://dx.doi.org/10.1017/etds.2012.169.

Testo completo
Abstract (sommario):
AbstractMixing (of all orders) rank-one actions $T$ of the Heisenberg group ${H}_{3} ( \mathbb{R} )$ are constructed. The restriction of $T$ to the center of ${H}_{3} ( \mathbb{R} )$ is simple and commutes only with $T$. Mixing Poisson and mixing Gaussian actions of ${H}_{3} ( \mathbb{R} )$ are also constructed. A rigid weakly mixing rank-one action $T$ is constructed such that the restriction of $T$ to the center of ${H}_{3} ( \mathbb{R} )$ is not isomorphic to its inverse.
Gli stili APA, Harvard, Vancouver, ISO e altri
49

Godinho, Leonor, e M. E. Sousa-Dias. "The Fundamental Group ofS1-manifolds". Canadian Journal of Mathematics 62, n. 5 (1 ottobre 2010): 1082–98. http://dx.doi.org/10.4153/cjm-2010-053-3.

Testo completo
Abstract (sommario):
AbstractWe address the problem of computing the fundamental group of a symplecticS1-manifold for non-Hamiltonian actions on compact manifolds, and for Hamiltonian actions on non-compact manifolds with a proper moment map. We generalize known results for compact manifolds equipped with a HamiltonianS1-action. Several examples are presented to illustrate our main results.
Gli stili APA, Harvard, Vancouver, ISO e altri
50

Isaacs, I. M. "Dual modules and group actions on extra-special groups". Rocky Mountain Journal of Mathematics 18, n. 3 (settembre 1988): 505–18. http://dx.doi.org/10.1216/rmj-1988-18-3-505.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia