Letteratura scientifica selezionata sul tema "Gravity waves"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Gravity waves".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Gravity waves"
Naciri, Mamoun, e Chiang C. Mei. "Evolution of short gravity waves on long gravity waves". Physics of Fluids A: Fluid Dynamics 5, n. 8 (agosto 1993): 1869–78. http://dx.doi.org/10.1063/1.858812.
Testo completoDias, Frédéric, e Christian Kharif. "NONLINEAR GRAVITY AND CAPILLARY-GRAVITY WAVES". Annual Review of Fluid Mechanics 31, n. 1 (gennaio 1999): 301–46. http://dx.doi.org/10.1146/annurev.fluid.31.1.301.
Testo completoAkers, Benjamin F., David M. Ambrose e J. Douglas Wright. "Gravity perturbed Crapper waves". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470, n. 2161 (8 gennaio 2014): 20130526. http://dx.doi.org/10.1098/rspa.2013.0526.
Testo completoBeya, Jose, William Peirson e Michael Banner. "ATTENUATION OF GRAVITY WAVES BY TURBULENCE". Coastal Engineering Proceedings 1, n. 32 (2 febbraio 2011): 3. http://dx.doi.org/10.9753/icce.v32.waves.3.
Testo completoKenyon, Kern E. "Frictionless Surface Gravity Waves". Natural Science 12, n. 04 (2020): 199–201. http://dx.doi.org/10.4236/ns.2020.124017.
Testo completoSUN, TIEN-YU, e KAI-HUI CHEN. "ON INTERNAL GRAVITY WAVES". Tamkang Journal of Mathematics 29, n. 4 (1 dicembre 1998): 249–69. http://dx.doi.org/10.5556/j.tkjm.29.1998.4254.
Testo completoVikulin, A. V., A. A. Dolgaya e S. A. Vikulina. "Geodynamic waves and gravity". Geodynamics & Tectonophysics 5, n. 1 (2014): 291–303. http://dx.doi.org/10.5800/gt-2014-5-1-0128.
Testo completoLonguet-Higgins, M. S. "Bifurcation in gravity waves". Journal of Fluid Mechanics 151, n. -1 (febbraio 1985): 457. http://dx.doi.org/10.1017/s0022112085001057.
Testo completoPizzo, Nick E. "Surfing surface gravity waves". Journal of Fluid Mechanics 823 (16 giugno 2017): 316–28. http://dx.doi.org/10.1017/jfm.2017.314.
Testo completoSTENFLO, L., e P. K. SHUKLA. "Nonlinear acoustic–gravity waves". Journal of Plasma Physics 75, n. 6 (11 marzo 2009): 841–47. http://dx.doi.org/10.1017/s0022377809007892.
Testo completoTesi sul tema "Gravity waves"
Popat, Nilesh R. "Steep capillary waves on gravity waves". Thesis, University of Bristol, 1989. http://hdl.handle.net/1983/78695ee9-b923-4374-b70c-6589b4215241.
Testo completoLeaman, Nye Abigail. "Scattering of internal gravity waves". Thesis, University of Cambridge, 2011. https://www.repository.cam.ac.uk/handle/1810/238679.
Testo completoHalliday, Oliver John. "Atmospheric convection and gravity waves". Thesis, University of Leeds, 2018. http://etheses.whiterose.ac.uk/22414/.
Testo completoDoherty, Mary Jane. "Focal lengths and gravity waves". Thesis, Massachusetts Institute of Technology, 1985. http://hdl.handle.net/1721.1/73280.
Testo completoMICROFICHE COPY AVAILABLE IN ARCHIVES AND ROTCH.
Transferred to 1/2 in VHS videotape from 8 mm film.
Includes bibliographical references (leaves 56-57).
Film is composed of tiny photographs which, when projected, sometimes look very much like people and things in the real world. Film, too, cannot be separated from its tools. Aesthetic criticism was, and still is, weighted towards consideration of the life-like tiny photographs. This thesis traces the evolution of film technology in order to establish the point where non- fiction ideology (aesthetics) lost pace with technical innovation - a derailment, so to speak, with nefarious implications for the present-day filmmaker. The emphasis is on lenses - the provocative "camera eye" - and sound recording equipment - which proved to be the rate-limiter of technical advance. This thesis considers two filmmaking solutions to the present malaise; the Standard TV Documentary, and the single-person shooting methodology of former MIT filmmakers, Jeff Kreines and Joel DeMott - both of which, in turn , will be compared to my own response - in the form of a movie, Gravity, which is about the members of an MIT experimental astrophysics laboratory trying to discover gravity waves. A videotape copy of the movie. is included with the thesis paper.
by Mary Jane Doherty.
M.S.V.S.
Mantke, Wolfgang. "Spin and gravity". Thesis, Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/27605.
Testo completoGibson-Wilde, Dorothy E. "Atmospheric gravity waves in constituent distributions /". Title page, abstract and contents only, 1996. http://web4.library.adelaide.edu.au/theses/09PH/09phg4516.pdf.
Testo completoMeza, Valle Claudio Alejandro. "Early detection of extreme waves by acoustic gravity-waves". Tesis, Universidad de Chile, 2019. http://repositorio.uchile.cl/handle/2250/171084.
Testo completoExtreme waves generated in the ocean are of high importance because various maritime structures in the world, including ships, are confronted to this type of wave events, both in deep waters and in coastal areas. Some extreme waves correspond to wave phenomena generated in an atypical way in the ocean, also called monster waves, freak waves, rogue waves, extreme waves, solitons etc., since their generation differs from the common waves generated by wind. Assuming a slightly compressible ocean, the generation and analysis of acoustic-gravity waves (AGW or acoustic waves) in the ocean have been the subject of study for some time, because from them it is possible to obtain some information from the gravity wave, in this case a extreme wave that have generated them, and also to know other kind of phenomena induced by these AGW, as is the case of the bottom pressure. In the present work, a mathematical model has been developed which represents the generation and propagation of an extreme wave represented by a pressure change in the surface of the ocean considering compressible fluid, from which the generation and propagation of acoustic waves is induced. Since sound travels at a speed of 1500 m/s in the ocean, these waves arrive first at any observation point, allowing early detection of the extreme wave from the pressure in the oceanic bottom due to propagation of the acoustic wave. The theoretical development and two-dimensional numerical simulations are presented in the document. The implementation of this methodology and its results is relevant in the field of civil and maritime engineering in Chile since its high potential in coastal zones, due to the fact that for some years, the frequency of extreme wave events has been seen increased, and having an alternative detection system for extreme wave events can become a relevant factor in coastal management and natural disasters services. It is important to mention that this type of work has not been developed previously in Chile.
proyectos Centros de Excelencia Basal Conicyt PIA AFB 170001 CMM & UMI-CNRS 2807 y Fondecyt Regular 1171854
Horne, Iribarne Ernesto. "Transport properties of internal gravity waves". Thesis, Lyon, École normale supérieure, 2015. http://www.theses.fr/2015ENSL1027/document.
Testo completoInternal waves are produced as a consequence of the dynamic balance between buoyancy and gravity forces when a particle of fluid is vertically displaced in a stably stratified environment. Geophysical systems such as ocean and atmosphere are naturally stratified and therefore suitable for internal waves propagation. Furthermore, these two environments stock a vast amount of particles at their boundaries and in their bulk. Therefore, internal waves and particles will inexorably interact in these systems. In this work, exploratory experiments are performed to study wave generated erosive transport of particles. In order to determine a transport threshold, the peculiar properties of internal waves (“critical reflection”) are employed to increase the intensity of the wave field at the boundaries. A method was developed in collaboration with a signal processing team to improve the determination of the wave components involved in near-critical reflection. This method enabled us to compare our experimental results with a theory of critical reflection, showing good agreement and allowing to extrapolate these results to experiments beyond ours and to oceanic conditions. In addition, we study the interaction of internal waves with a column of particles in sedimentation. Two main effects are observed: the column oscillates around an equilibrium position, and it is displaced as a whole. The direction of the displacement of the column is explained by computing the effect of the Lagrangian drift of the waves. This effect could also explain the frequency dependence of the displacement
Eckermann, Stephen D. "Atmospheric gravity waves : obsevations and theory /". Title page, table of contents and abstract only, 1990. http://web4.library.adelaide.edu.au/theses/09PH/09phe1862.pdf.
Testo completoCopies of author's previously published articles inserted. Includes bibliographical references (leaves 261-288).
Yan, Xiuping. "Satellite observations of atmospheric gravity waves". Thesis, University of Leicester, 2010. http://hdl.handle.net/2381/7979.
Testo completoLibri sul tema "Gravity waves"
Dastidar, Pranab R. Magneto-gravity. Mumbai: P.R. Dastidar, 2006.
Cerca il testo completoA, Datta, Sharman R. D e Dryden Flight Research Facility, a cura di. Lee waves: Benign and malignant. Edwards, Calif: National Aeronautics and Space Administration, Dryden Flight Research Facility, 1993.
Cerca il testo completoAgnon, Yehuda. Nonlinear diffraction of ocean gravity waves. Woods Hole, Mass: Woods Hole Oceanographic Institution, 1986.
Cerca il testo completoWilliams, JohnM. Tables of progressive gravity waves. Boston (Mass.): Pitman Advanced Publishing Program, 1985.
Cerca il testo completoVanden-Broeck, J. M. Gravity-capillary free-surface flows. New York: Cambridge University Press, 2010.
Cerca il testo completoN, Hunt J., a cura di. Gravity waves in water of finite depth. Southampton: Computational Mechanics Publications, 1997.
Cerca il testo completoVanden-Broeck, J. M. Gravity-capillary free-surface flows. New York: Cambridge University Press, 2010.
Cerca il testo completoKeeley, J. R. SAR sensitivities to surface gravity waves. Ottawa: Department of Fisheries and Oceans, 1992.
Cerca il testo completoK, Dutt P., e Langley Research Center, a cura di. Acoustic gravity waves: A computational approach. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1987.
Cerca il testo completoRabinovich, A. B. Dlinnye gravitat͡s︡ionnye volny v okeane: Zakhvat, resonans, izluchenie. Sankt-Peterburg: Gidrometeoizdat, 1993.
Cerca il testo completoCapitoli di libri sul tema "Gravity waves"
Olbers, Dirk, Jürgen Willebrand e Carsten Eden. "Gravity Waves". In Ocean Dynamics, 179–210. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23450-7_7.
Testo completoHooke, William H. "Gravity Waves". In Mesoscale Meteorology and Forecasting, 272–88. Boston, MA: American Meteorological Society, 1986. http://dx.doi.org/10.1007/978-1-935704-20-1_12.
Testo completoManasseh, Richard. "Internal gravity waves". In Fluid Waves, 119–32. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429295263-5.
Testo completoPărău, Emilian I., e Jean-Marc Vanden-Broeck. "Gravity-Capillary and Flexural-Gravity Solitary Waves". In Nonlinear Water Waves, 183–99. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-33536-6_11.
Testo completoHogan, Peter A., e Dirk Puetzfeld. "‘Spherical’ Gravity Waves". In SpringerBriefs in Physics, 23–29. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-16826-0_4.
Testo completoPedlosky, Joseph. "Internal Gravity Waves". In Waves in the Ocean and Atmosphere, 59–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05131-3_7.
Testo completoSakellariadou, Mairi. "Gravitational Waves". In Modified Gravity and Cosmology, 375–83. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-83715-0_25.
Testo completoMaeder, André. "Transport by Gravity Waves". In Physics, Formation and Evolution of Rotating Stars, 449–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-76949-1_17.
Testo completoMiles, Alan J., e B. Roberts. "Magnetoacoustic-Gravity Surface Waves". In Mechanisms of Chromospheric and Coronal Heating, 508–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-87455-0_84.
Testo completoHogan, Peter A., e Dirk Puetzfeld. "Plane Fronted Gravity Waves". In SpringerBriefs in Physics, 9–12. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-16826-0_2.
Testo completoAtti di convegni sul tema "Gravity waves"
AYON-BEATO, ELOY, GASTON GIRIBET e MOKHTAR HASSAINE. "CRITICAL GRAVITY WAVES". In Proceedings of the MG13 Meeting on General Relativity. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814623995_0085.
Testo completoMochimaru, Yoshihiro. "Gravity-capillary, solitary waves". In RENEWABLE ENERGY SOURCES AND TECHNOLOGIES. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5127488.
Testo completoRusso, Pedro, Pedro Oliveira, Catarina Sá-Dantas, Filipe Correia e Vasco Almeida. "Faraday Waves Zero Gravity Experiment". In 56th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.iac-05-a2.p.04.
Testo completoShafi, Qaisar. "Will Planck Observe Gravity Waves?" In The European Physical Society Conference on High Energy Physics. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.180.0483.
Testo completoLehn, Waldemar H., Wayne K. Silvester e David M. Fraser. "Mirages with Atmospheric Gravity Waves". In Light and Color in the Open Air. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/lcoa.1993.thb.3.
Testo completoLin, Chunshan, e Misao Sasaki. "Resonant Amplification of Primordial Gravitational Waves". In Second LeCosPA International Symposium: Everything about Gravity. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813203952_0035.
Testo completoOnorato, Miguel. "Numerical Simulation Of Surface Gravity Waves". In 28th Conference on Modelling and Simulation. ECMS, 2014. http://dx.doi.org/10.7148/2014-0007.
Testo completoTrofimov, Evgenii A. "EXPERIMENTAL STUDY OF INTERNAL GRAVITY WAVES". In Science Present and Future: Research Landscape in the 21st century. Иркутск: Федеральное государственное бюджетное учреждение науки "Иркутский научный центр Сибирского отделения Российской академии наук", 2022. http://dx.doi.org/10.54696/isc_49741454.
Testo completoKim, Eun-jin. "Angular momentum transport by internal gravity waves". In Waves in dusty, solar and space plasmas. AIP, 2000. http://dx.doi.org/10.1063/1.1324948.
Testo completoLin, Jung-Tai. "Empirical Prediction of Wave Spectrum for Wind-Generated Gravity Waves". In 20th International Conference on Coastal Engineering. New York, NY: American Society of Civil Engineers, 1987. http://dx.doi.org/10.1061/9780872626003.036.
Testo completoRapporti di organizzazioni sul tema "Gravity waves"
Guza, R. T. Surface Gravity Waves And Ambient Microseismic Noise. Fort Belvoir, VA: Defense Technical Information Center, settembre 1992. http://dx.doi.org/10.21236/ada256498.
Testo completoMuller, Peter. ARI: Internal Gravity Waves at Abrupt Topography. Fort Belvoir, VA: Defense Technical Information Center, gennaio 1991. http://dx.doi.org/10.21236/ada266383.
Testo completoFritts, David C. Nonlinear Spectral Evolution of Atmospheric Gravity Waves. Fort Belvoir, VA: Defense Technical Information Center, novembre 2000. http://dx.doi.org/10.21236/ada387509.
Testo completoKo, Dong S. A Multiscale Nested Modeling Framework to Simulate the Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves. Fort Belvoir, VA: Defense Technical Information Center, settembre 2015. http://dx.doi.org/10.21236/ad1013704.
Testo completoMuller, Peter. Scattering of Internal Gravity Waves at Finite Topography. Fort Belvoir, VA: Defense Technical Information Center, settembre 1997. http://dx.doi.org/10.21236/ada628215.
Testo completoBottone, Steven. Acoustic-Gravity Waves From Low-Altitude Localized Disturbances. Fort Belvoir, VA: Defense Technical Information Center, maggio 1993. http://dx.doi.org/10.21236/ada264804.
Testo completoMuller, Peter. Scattering of Internal Gravity Waves at Finite Topography. Fort Belvoir, VA: Defense Technical Information Center, settembre 2001. http://dx.doi.org/10.21236/ada624678.
Testo completoSullivan, Peter P., James C. McWilliams e Chin-Hoh Moeng. Surface Gravity Waves and Coupled Marine Boundary Layers. Fort Belvoir, VA: Defense Technical Information Center, settembre 2001. http://dx.doi.org/10.21236/ada625363.
Testo completoSilverstein, Eva, e Alexander Westphal. Monodromy in the CMB: Gravity Waves and String Inflation. Office of Scientific and Technical Information (OSTI), marzo 2008. http://dx.doi.org/10.2172/926191.
Testo completoDunkerton, Timothy J. Gravity Waves in the Atmosphere: Instability, Saturation, and Transport. Fort Belvoir, VA: Defense Technical Information Center, novembre 1995. http://dx.doi.org/10.21236/ada303638.
Testo completo