Letteratura scientifica selezionata sul tema "Graph-based input representation"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Graph-based input representation".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Graph-based input representation"
Lu, Fangbo, Zhihao Zhang e Changsheng Shui. "Online trajectory anomaly detection model based on graph neural networks and variational autoencoder". Journal of Physics: Conference Series 2816, n. 1 (1 agosto 2024): 012006. http://dx.doi.org/10.1088/1742-6596/2816/1/012006.
Testo completoYu, Xingtong, Zemin Liu, Yuan Fang e Xinming Zhang. "Learning to Count Isomorphisms with Graph Neural Networks". Proceedings of the AAAI Conference on Artificial Intelligence 37, n. 4 (26 giugno 2023): 4845–53. http://dx.doi.org/10.1609/aaai.v37i4.25610.
Testo completoBauer, Daniel. "Understanding Descriptions of Visual Scenes Using Graph Grammars". Proceedings of the AAAI Conference on Artificial Intelligence 27, n. 1 (29 giugno 2013): 1656–57. http://dx.doi.org/10.1609/aaai.v27i1.8498.
Testo completoWu, Xinyue, e Huilin Chen. "Augmented Feature Diffusion on Sparsely Sampled Subgraph". Electronics 13, n. 16 (15 agosto 2024): 3249. http://dx.doi.org/10.3390/electronics13163249.
Testo completoCooray, Thilini, e Ngai-Man Cheung. "Graph-Wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning". Proceedings of the AAAI Conference on Artificial Intelligence 36, n. 6 (28 giugno 2022): 6420–28. http://dx.doi.org/10.1609/aaai.v36i6.20593.
Testo completoGildea, Daniel, Giorgio Satta e Xiaochang Peng. "Ordered Tree Decomposition for HRG Rule Extraction". Computational Linguistics 45, n. 2 (giugno 2019): 339–79. http://dx.doi.org/10.1162/coli_a_00350.
Testo completoMiao, Fengyu, Xiuzhuang Zhou, Shungen Xiao e Shiliang Zhang. "A Graph Similarity Algorithm Based on Graph Partitioning and Attention Mechanism". Electronics 13, n. 19 (25 settembre 2024): 3794. http://dx.doi.org/10.3390/electronics13193794.
Testo completoCoşkun, Kemal Çağlar, Muhammad Hassan e Rolf Drechsler. "Equivalence Checking of System-Level and SPICE-Level Models of Linear Circuits". Chips 1, n. 1 (13 giugno 2022): 54–71. http://dx.doi.org/10.3390/chips1010006.
Testo completoZhang, Dong, Suzhong Wei, Shoushan Li, Hanqian Wu, Qiaoming Zhu e Guodong Zhou. "Multi-modal Graph Fusion for Named Entity Recognition with Targeted Visual Guidance". Proceedings of the AAAI Conference on Artificial Intelligence 35, n. 16 (18 maggio 2021): 14347–55. http://dx.doi.org/10.1609/aaai.v35i16.17687.
Testo completoRen, Min, Yunlong Wang, Zhenan Sun e Tieniu Tan. "Dynamic Graph Representation for Occlusion Handling in Biometrics". Proceedings of the AAAI Conference on Artificial Intelligence 34, n. 07 (3 aprile 2020): 11940–47. http://dx.doi.org/10.1609/aaai.v34i07.6869.
Testo completoTesi sul tema "Graph-based input representation"
Agarwal, Navneet. "Autοmated depressiοn level estimatiοn : a study οn discοurse structure, input representatiοn and clinical reliability". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMC215.
Testo completoGiven the severe and widespread impact of depression, significant research initiatives have been undertaken to define systems for automated depression assessment. The research presented in this dissertation revolves around the following questions that remain relatively unexplored despite their relevance within automated depression assessment domain; (1) the role of discourse structure in mental health analysis, (2) the relevance of input representation towards the predictive abilities of neural network models, and (3) the importance of domain expertise in automated depression detection.The dyadic nature of patient-therapist interviews ensures the presence of a complex underlying structure within the discourse. Within this thesis, we first establish the importance of therapist questions within the neural network model's input, before showing that a sequential combination of patient and therapist input is a sub-optimal strategy. Consequently, Multi-view architectures are proposed as a means of incorporating the discourse structure within the learning process of neural networks. Experimental results with two different text encodings show the advantages of the proposed multi-view architectures, validating the relevance of retaining discourse structure within the model's training process.Having established the need to retain the discourse structure within the learning process, we further explore graph based text representations. The research conducted in this context highlights the impact of input representations not only in defining the learning abilities of the model, but also in understanding their predictive process. Sentence Similarity Graphs and Keyword Correlation Graphs are used to exemplify the ability of graphical representations to provide varying perspectives of the same input, highlighting information that can not only improve the predictive performance of the models but can also be relevant for medical professionals. Multi-view concept is also incorporated within the two graph structures to further highlight the difference in the perspectives of the patient and the therapist within the same interview. Furthermore, it is shown that visualization of the proposed graph structures can provide valuable insights indicative of subtle changes in patient and therapist's behavior, hinting towards the mental state of the patient.Finally, we highlight the lack of involvement of medical professionals within the context of automated depression detection based on clinical interviews. As part of this thesis, clinical annotations of the DAIC-WOZ dataset were performed to provide a resource for conducting interdisciplinary research in this field. Experiments are defined to study the integration of the clinical annotations within the neural network models applied to symptom-level prediction task within the automated depression detection domain. Furthermore, the proposed models are analyzed in the context of the clinical annotations to analogize their predictive process and psychological tendencies with those of medical professionals, a step towards establishing them as reliable clinical tools
Capitoli di libri sul tema "Graph-based input representation"
Jagan, Balaji, Ranjani Parthasarathi e Geetha T. V. "Graph-Based Abstractive Summarization". In Innovations, Developments, and Applications of Semantic Web and Information Systems, 236–61. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-5042-6.ch009.
Testo completoKumar, P. Krishna, e Harish G. Ramaswamy. "Graph Classification with GNNs: Optimisation, Representation & Inductive Bias". In Frontiers in Artificial Intelligence and Applications. IOS Press, 2024. http://dx.doi.org/10.3233/faia240726.
Testo completoToropov, Andrey A., Alla P. Toropova, Emilio Benfenati, Orazio Nicolotti, Angelo Carotti, Karel Nesmerak, Aleksandar M. Veselinović et al. "QSPR/QSAR Analyses by Means of the CORAL Software". In Pharmaceutical Sciences, 929–55. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-1762-7.ch036.
Testo completoToropov, Andrey A., Alla P. Toropova, Emilio Benfenati, Orazio Nicolotti, Angelo Carotti, Karel Nesmerak, Aleksandar M. Veselinović et al. "QSPR/QSAR Analyses by Means of the CORAL Software". In Quantitative Structure-Activity Relationships in Drug Design, Predictive Toxicology, and Risk Assessment, 560–85. IGI Global, 2015. http://dx.doi.org/10.4018/978-1-4666-8136-1.ch015.
Testo completoZhang, Taolin, Dongyang Li, Qizhou Chen, Chengyu Wang, Longtao Huang, Hui Xue, Xiaofeng He e Jun Huang. "R4: Reinforced Retriever-Reorder-Responder for Retrieval-Augmented Large Language Models". In Frontiers in Artificial Intelligence and Applications. IOS Press, 2024. http://dx.doi.org/10.3233/faia240755.
Testo completoYang, Zixuan, Xiao Wang, Yanhua Yu, Yuling Wang, Kangkang Lu, Zirui Guo, Xiting Qin, Yunshan Ma e Tat-Seng Chua. "Hop-based Heterogeneous Graph Transformer". In Frontiers in Artificial Intelligence and Applications. IOS Press, 2024. http://dx.doi.org/10.3233/faia240759.
Testo completoOmerovic, Aida, Amela Karahasanovic e Ketil Stølen. "Uncertainty Handling in Weighted Dependency Trees". In Dependability and Computer Engineering, 381–416. IGI Global, 2012. http://dx.doi.org/10.4018/978-1-60960-747-0.ch016.
Testo completoAtti di convegni sul tema "Graph-based input representation"
Morris, Matthew, David J. Tena Cucala, Bernardo Cuenca Grau e Ian Horrocks. "Relational Graph Convolutional Networks Do Not Learn Sound Rules". In 21st International Conference on Principles of Knowledge Representation and Reasoning {KR-2023}, 897–908. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/kr.2024/84.
Testo completoGuo, Zhichun, Kehan Guo, Bozhao Nan, Yijun Tian, Roshni G. Iyer, Yihong Ma, Olaf Wiest et al. "Graph-based Molecular Representation Learning". In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/744.
Testo completoJin, Ming, Yizhen Zheng, Yuan-Fang Li, Chen Gong, Chuan Zhou e Shirui Pan. "Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning". In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/204.
Testo completoJin, Di, Luzhi Wang, Yizhen Zheng, Xiang Li, Fei Jiang, Wei Lin e Shirui Pan. "CGMN: A Contrastive Graph Matching Network for Self-Supervised Graph Similarity Learning". In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/292.
Testo completoGuan, Sheng, Hanchao Ma e Yinghui Wu. "RoboGNN: Robustifying Node Classification under Link Perturbation". In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/420.
Testo completoAhmetaj, Shqiponja, Robert David, Magdalena Ortiz, Axel Polleres, Bojken Shehu e Mantas Šimkus. "Reasoning about Explanations for Non-validation in SHACL". In 18th International Conference on Principles of Knowledge Representation and Reasoning {KR-2021}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/kr.2021/2.
Testo completoLi, Zuchao, Xingyi Guo, Letian Peng, Lefei Zhang e Hai Zhao. "iRe2f: Rethinking Effective Refinement in Language Structure Prediction via Efficient Iterative Retrospecting and Reasoning". In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/570.
Testo completoFan, Zhihao, Zhongyu Wei, Siyuan Wang, Ruize Wang, Zejun Li, Haijun Shan e Xuanjing Huang. "TCIC: Theme Concepts Learning Cross Language and Vision for Image Captioning". In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/91.
Testo completoSun, Tien-Lung, Chuan-Jun Su, Richard J. Mayer e Richard A. Wysk. "Shape Similarity Assessment of Mechanical Parts Based on Solid Models". In ASME 1995 Design Engineering Technical Conferences collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/detc1995-0234.
Testo completoMiller, Michael G., James L. Mathieson, Joshua D. Summers e Gregory M. Mocko. "Representation: Structural Complexity of Assemblies to Create Neural Network Based Assembly Time Estimation Models". In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-71337.
Testo completo