Letteratura scientifica selezionata sul tema "Glaces astrophysiques"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Glaces astrophysiques".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Tesi sul tema "Glaces astrophysiques"
Bychkova, Anna. "Energetic iοn prοcessing οf arοmatic mοlecules in the sοlid phase". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMC236.
Testo completoFormed in the dense clouds, icy mantles are condensates of small molecules on solid grains. These icy mantles are promising sites for rich chemical processes, where complex organic molecules can form, as these mantles are continuously exposed to ionizing radiation. Once dense clouds transform into an accretion disc and eventually into a planetary system, these icy mantles may potentially contribute to the reservoir of the complex molecules of the planets.In this thesis, the effects of ion irradiation on two aromatic molecules, pyridine and pyrene were investigated. The samples were exposed to ion irradiation at the GANIL (Caen, France) and ATOMKI (Debrecen, Hungary) ion beam facilities. Their evolution was monitored using in-situ infrared spectroscopy. It was found that the initial structure (amorphous or crystalline) and the irradiation temperature do not affect the destruction cross section of pure pyridine. Additionally, it was observed that the local dose is not a key parameter as previously assumed. Indeed, since the destruction of pyrene caused by heavy ions, starting from C, is significantly greater than that caused by lighter ions such as H and He for the same deposited local dose. For both molecules, a significant increase in the destruction cross section was observed for decreasing molecule concentration in the water matrix. The half-life time of pyridine and pyrene in dense clouds was estimated to be around 13 and 20 millions of years, respectively. This suggests that once formed in these environments, they could survive and contribute to planetary formation
Fresneau, Aurélien. "Simulations expérimentales en laboratoire pour la préparation à l'analyse des données issues de missions spatiales, ainsi que pour l'étude de l'impact en exobiologie de l'évolution de la matière organique au sein d'environnements astrophysiques". Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4760/document.
Testo completoDust grains located in dense molecular clouds play a major role in the formation of complex organic molecules. These grains are covered by icy mantles containing primitive molecules. Dense molecular clouds can collapse and lead to the formation of planetary systems such as our own. During this evolution, the grains are exposed to energetic processes which transform the organic matter inside the ices. The grains are ultimately incorporated into small solar system bodies such as comets and asteroids, which can then contribute to the exogenous delivery of organic matter on Earth. In this context, this thesis focuses on simulating the chemical evolution of ices. To that end, ice analogues are formed by condensing a relevant gas mixture on a cold substrate. These interstellar ice analogues are irradiated with UV photons and/or heated in order to simulate astrophysical processes. An organic residue is formed which we characterized with Fourier transform infrared spectroscopy (FTIR) and very high resolution mass spectrometry (VHRMS) by Orbitrap.First, we performed mechanistic studies focused on the formation of aminoalcohols and hydroxynitriles from the warming of ices containing acetaldehyde (CH$_3$CHO) or acetone ((CH$_3$)$_2$CO) with NH$_3$, HCN and H$_2$O. Secondly, we studied the global composition of residues made from irradiation and warming of ices containing H$_2$O, CH$_3$OH, and NH$_3$. We present a new approach to interpret Orbitrap data of the residues. Similarities observed with meteoritic organic matter analyses found in the literature could mean that some of the evolution that led to meteoritic organic matter is shared with the evolution of our residues
Fresneau, Aurélien. "Simulations expérimentales en laboratoire pour la préparation à l'analyse des données issues de missions spatiales, ainsi que pour l'étude de l'impact en exobiologie de l'évolution de la matière organique au sein d'environnements astrophysiques". Electronic Thesis or Diss., Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4760.
Testo completoDust grains located in dense molecular clouds play a major role in the formation of complex organic molecules. These grains are covered by icy mantles containing primitive molecules. Dense molecular clouds can collapse and lead to the formation of planetary systems such as our own. During this evolution, the grains are exposed to energetic processes which transform the organic matter inside the ices. The grains are ultimately incorporated into small solar system bodies such as comets and asteroids, which can then contribute to the exogenous delivery of organic matter on Earth. In this context, this thesis focuses on simulating the chemical evolution of ices. To that end, ice analogues are formed by condensing a relevant gas mixture on a cold substrate. These interstellar ice analogues are irradiated with UV photons and/or heated in order to simulate astrophysical processes. An organic residue is formed which we characterized with Fourier transform infrared spectroscopy (FTIR) and very high resolution mass spectrometry (VHRMS) by Orbitrap.First, we performed mechanistic studies focused on the formation of aminoalcohols and hydroxynitriles from the warming of ices containing acetaldehyde (CH₃CHO) or acetone ((CH₃)₂CO) with NH₃, HCN and H₂O. Secondly, we studied the global composition of residues made from irradiation and warming of ices containing H₂O, CH₃OH, and NH₃. We present a new approach to interpret Orbitrap data of the residues. Similarities observed with meteoritic organic matter analyses found in the literature could mean that some of the evolution that led to meteoritic organic matter is shared with the evolution of our residues
Lv, Xue-Yang. "Irradiation de glaces d’intérêt astrophysique par des ions lourds". Caen, 2013. http://www.theses.fr/2013CAEN2074.
Testo completoThis thesis concerns irradiation of ices composed of simple molecules (H2O, CO, CO2, NH3) with heavy ion beams at GANIL. These ices exist in several astrophysical environments such as comets, surfaces of Jovian satellites, and dense molecular clouds. Irradiation in the laboratory allows simulating the effects of cosmic rays with high energy ion beams, and those of solar wind with low energy beams. The analysis is performed by Fourier transformed Infrared absorption spectroscopy, which allows detecting molecules created during ion irradiation. The evolution of the ices, characterized by destruction cross sections, formation cross sections and sputtering yields was studied as a function of the deposited energy for some of the most abundant simple molecules in space as a function of electronic stopping power. Furthermore, Implantation experiments were performed in order to study chemistry induced by the projectile ions and formation of molecules such as CO2 and SO2. The formation rates were compared to the corresponding observations of abundance of those molecules and the Jovian moon Europa. After irradiation of the mixture CO2+NH3 several new species such as CO, OCN- et [HCOO-][NH4+] were observed. This indicates that complex molecules can possibly be formed by irradiation of ices in space
Schmitt, Bernard. "La Surface de la glace structure, dynamique et interactions, implications astrophysiques /". Phd thesis, Grenoble 2 : ANRT, 1986. http://catalogue.bnf.fr/ark:/12148/cb37601091r.
Testo completoSeperuelo, Duarte Eduardo. "Etude par spectroscopie infrarouge des effets d'irradiation de glaces d'intérêt astrophysique par des ions lourds". Caen, 2009. http://www.theses.fr/2009CAEN2050.
Testo completoIn the Solar System, as well as inside the dense interstellar regions, ice mantles constituted by small molecules are exposed to ionizing radiation formed by photons, electrons and ions. As a result, chemical reactions, phase changes, desorption and other physical chemical processes occur in the ice. Among the ionizing projectiles, fast heavy ions play a particular role in the sense that they are relatively low abundant in space but have high ionizing power and are very efficient for inducing desorption. These cosmic events can be simulated in laboratory. The main goal of the current work is to identify and quantify the effects of the fast heavy ion interaction with ices. Experiments were performed at the medium energy facility at GANIL, where 46 and 537 MeV Ni ions irradiated four ices cooled down at about 13 K: H2O, CO, CO2 and the mixture H2O:NH3:CO. The molecular concentrations of these species and the formed ones were determined by infrared spectroscopy (FTIR) as a function of the beam fluence. From the acquired data, destruction and formation cross sections of molecular species were measured as well as the sputtering yields. Results show that protons are more efficient for producing new molecular species, while heavy ions are responsible for the desorption process. This work is collaboration between the PUC-Rio and CIMAP-GANIL institutions
Langlinay, Thomas. "Effets de l’irradiation par des ions lourds multichargés sur des cristaux et des glaces d’intérêt astrophysique". Caen, 2014. http://www.theses.fr/2014CAEN2045.
Testo completoThe solar system and the interstellar medium are permanently exposed to radiations such as solar wind and cosmic rays. The interaction between energetic particles and astrophysical materials (ices, silicates and carbon-based materials) plays an important role in several astrophysical phenomena. Laboratory experiments correlated to observational data may allow a better understanding of these phenomena. The aim of this thesis was to study the effect of slow and fast heavy ions on lithium fluoride and on astrophysical materials such as ices and silicates. We focused on the sputtering phenomenon. The present study was performed with a time of flight imaging technique (XY-TOF-SIMS) at the CIMAP-GANIL laboratory. The major fraction of secondary ions is found to be emitted in the form of clusters. Several parameters affect sputtering: the stopping power regime, the thickness of the target, the incident angle and, for low highly charged ions, the projectile charge. Our laboratory simulations exhibit the possibility that sputtered particles contribute to the formation of Mercury’s and Jupiter’s moons exospheres
Bénit, Jean. "Effets d'irradiation par des ions de grande énergie dans la glace HO et applications astrophysiques". Grenoble 2 : ANRT, 1987. http://catalogue.bnf.fr/ark:/12148/cb376028420.
Testo completoBénit, Jean. "Effets d'irradiation par des ions de grande énergie dans de la glace H₂O et applications astrophysiques". Paris 11, 1987. http://www.theses.fr/1987PA112229.
Testo completoThis thesis presents the study of radiation effects induced in H20 ice by MeV/u ions: desorption of ionized species, "erosion" of the irradiated film and molecular synthesis within the ice. The desorption is analysed by time of flight mass spectroscopy. We describe the mass spectra of the desorbed ions, both positively and negatively charged, up to 400 uma. The absolute yields are given, as well as their dependence with the energy and energy loss of the primary ions. The "erosion" of the ice is analysed by infrared spectroscopy, on line during the irradiation. Absolute yields are derived, as a function of the ions beam flux, the mass and energy of the ions, and the thickness of the samples. A linear dependence of the yield with the thickness is interpretated as follows: the erosion comes primarely from the dissociation of the molecules all along the ion tracks. Some astrophysical implications of the results are discussed in the framework of irradiation of icy material in a variety of environments: magnetospheres of giant planets, cometary nuclei, circumstellar shells and molecular clouds. Lt is emphasized that the irradiation by energetic ions plays a major role in cosmochemistry
DUARTE, EDUARDO SEPERUELO. "ETUDE DES EFFETS DE L´IRRADIATION PAR DES IONS LOURDS SUR DES GLACES D´INTÉRÊT ASTROPHYSIQUE PAR SPECTROSCOPIE INFRAROUGE". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2009. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=15132@1.
Testo completoDans le système solaire et dans les régions denses du milieu interstellaire, des manteaux de glaces constitués de petites molécules sont irradiés par des particules ionisantes : des photons, des électrons et des ions. L’interaction entre les particules énergétiques et les manteaux induit plusieurs processus tels que les réactions chimiques, les changements de phase et la désorption de molécules. Les effets de l’irradiation par des photons et des ions légers sont étudiés depuis 20 ans. Cependant, les expériences réalisées avec des ions lourds et rapides sont rares dans la littérature. Bien que les ions légers soient plus abondants, le grand pouvoir d’arrêt et le haut rendement de pulvérisation des ions lourds peuvent compenser cet écart numérique. Ce travail résulte d’un projet de collaboration entre la PUC-Rio et le CIMAP-GANIL. L’objectif de ce projet est d’étudier l’effet de l’irradiation de glaces astrophysiques avec des ions lourds et rapides. Les expériences ont été réalisées sur les lignes IRRSUD et SME du GANIL avec des ions Ni (46 et 537 MeV). L’analyse des glaces a été faite par spectroscopie infrarouge par transformée de Fourier (FTIR). Quatre cibles ont été irradiées et analysées : H2O, CO, CO2 et H2O :CO :NH3. Les sections efficaces de destruction, de création des molécules produites et les rendements de pulvérisation ont été déterminés pour chaque cible. Les résultats obtenus montrent que les ions lourds sont plus efficaces que les protons pour la pulvérisation des manteaux de glaces alors que les protons sont eux plus efficace pour la synthèse de nouvelles molécules.
No Sistema Solar e em regiões densas do meio interestelar, mantos de gelo constituídos de moléculas pequenas estão expostos à irradiação de partículas ionizantes: fótons, elétrons e íons. A interação entre partículas energéticas e os mantos induzem uma série de processos físicos e químicos no gelo como: reações químicas, mudanças de fase e dessorção de moléculas. Os efeitos da irradiação provocados por fótons e íons leves como prótons e partículas alfas vêm sendo estudados há mais de 10 anos. Porém, experimentos envolvendo a irradiação com íons pesados e rápidos são escarsos na literatura. Apesar dos íons leves serem mais abundantes no espaco, a alta taxa de ionização e o alto rendimento de dessorção induzidos pelos íons pesados podem compensar sua menor abundância. Este trabalho consiste em estudar os efeitos da irradiação de gelos astrofísicos por íons pesados e rápidos, em projeto de colaboração entre as instituições PUC-Rio e CIMAP-GANIL. Os experimentos foram realizados nas linhas de baixa e média energia do acelerador GANIL, utilizando íons de Ni com 46 MeV e 537 MeV de energia cinética. Os gelos foram analisados utilizando a técnica de espectrometria de infravermelho por transformada de Fourier (FTIR). Os quatro gelos irradiados foram: H2O, CO, CO2 e H2O:NH3:CO. As grandezas analisadas foram as seções de choque de destruição destas moléculas, as seções de choque de formação de novas espécies moleculares formadas nos gelos e os rendimentos de dessorção. Os resultados mostram que os íons pesados são mais eficientes do que os prótons na dessorção de moléculas em mantos de gelo no espaço, mesmo considerando as baixas abundâncias deles nos raios cósmicos. Ao contrário, em se tratando de síntese de novas espécies moleculares, os prótons são mais eficientes do que os íons pesados.
Libri sul tema "Glaces astrophysiques"
De feu et de glace : Ardentes géantes. Editions Odile Jacob, 2010.
Cerca il testo completo