Letteratura scientifica selezionata sul tema "Geometric finiteness"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Geometric finiteness".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Articoli di riviste sul tema "Geometric finiteness"

1

Lück, Wolfgang. "The Geometric Finiteness Obstruction." Proceedings of the London Mathematical Society s3-54, no. 2 (1987): 367–84. http://dx.doi.org/10.1112/plms/s3-54.2.367.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Swarup, G. A. "Geometric finiteness and rationality." Journal of Pure and Applied Algebra 86, no. 3 (1993): 327–33. http://dx.doi.org/10.1016/0022-4049(93)90107-5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Tuschmann, Wilderich. "Geometric diffeomorphism finiteness in low dimensions and homotopy group finiteness." Mathematische Annalen 322, no. 2 (2002): 413–20. http://dx.doi.org/10.1007/s002080100281.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Scott, G. P., and G. A. Swarup. "Geometric finiteness of certain Kleinian groups." Proceedings of the American Mathematical Society 109, no. 3 (1990): 765. http://dx.doi.org/10.1090/s0002-9939-1990-1013981-6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Grove, Karsten, Peter Petersen, and Jyh-Yang Wu. "Geometric finiteness theorems via controlled topology." Inventiones Mathematicae 99, no. 1 (1990): 205–13. http://dx.doi.org/10.1007/bf01234417.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Kapovich, Michael, and Beibei Liu. "Geometric finiteness in negatively pinched Hadamard manifolds." Annales Academiae Scientiarum Fennicae Mathematica 44, no. 2 (2019): 841–75. http://dx.doi.org/10.5186/aasfm.2019.4444.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Torroba, Gonzalo. "Finiteness of flux vacua from geometric transitions." Journal of High Energy Physics 2007, no. 02 (2007): 061. http://dx.doi.org/10.1088/1126-6708/2007/02/061.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Proctor, Emily. "Orbifold homeomorphism finiteness based on geometric constraints." Annals of Global Analysis and Geometry 41, no. 1 (2011): 47–59. http://dx.doi.org/10.1007/s10455-011-9270-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Durumeric, Oguz C. "Geometric finiteness in large families in dimension 3." Topology 40, no. 4 (2001): 727–37. http://dx.doi.org/10.1016/s0040-9383(99)00080-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Grove, Karsten, Peter Petersen V, and Jyh-Yang Wu. "Erratum to Geometric finiteness theorems via controlled topology." Inventiones mathematicae 104, no. 1 (1991): 221–22. http://dx.doi.org/10.1007/bf01245073.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Tesi sul tema "Geometric finiteness"

1

Fléchelles, Balthazar. "Geometric finiteness in convex projective geometry." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM029.

Testo completo
Abstract (sommario):
Cette thèse est consacrée à l’étude des orbivariétés projectives convexes géométriquement finies, et fait suite aux travaux de Ballas, Cooper, Crampon, Leitner, Long, Marquis et Tillmann sur le sujet. Une orbivariété projective convexe est le quotient d’un ouvert convexe et borné d’une carte affine de l’espace projectif réel (appelé aussi ouvert proprement convexe) par un groupe discret de transformations projectives préservant cet ouvert. S’il n’y a pas de segment dans le bord du convexe, on dit que l’orbivariété est strictement convexe, et si de plus il y a un unique hyperplan de support en cha
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Kuckuck, Benno. "Finiteness properties of fibre products." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:a9624d17-9d11-4bd0-8c46-78cbba73469c.

Testo completo
Abstract (sommario):
A group Γ is of type F<sub>n</sub> for some n ≥ 1 if it has a classifying complex with finite n-skeleton. These properties generalise the classical notions of finite generation and finite presentability. We investigate the higher finiteness properties for fibre products of groups.
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Bowditch, B. H. "Geometrical finiteness for hyperbolic groups." Thesis, University of Warwick, 1988. http://wrap.warwick.ac.uk/99188/.

Testo completo
Abstract (sommario):
In this paper, we describe various definitions of geometrical finiteness for discrete hyperbolic groups in any dimension, and prove their equivalence. This generalises what has been worked out in two and three dimensions by Marden. Beardon, Maskit, Thurston and others. We also discuss the nature of convex fundamental domains for such groups. We begin the paper with a discussion of results related to the Margulls Lemma and Bieberbach Theorems.
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Passaro, Davide. "Finiteness of Complete Intersection Calabi Yau Threefolds." Thesis, Uppsala universitet, Teoretisk fysik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-394987.

Testo completo
Abstract (sommario):
Of many modern constructions in geometry Calabi Yau manifolds hold special relevance in theoretical physics. These manifolds naturally arise from the study of compactification of certain string theories. In particular Calabi Yau manifolds of dimension three, commonly known as threefolds, are widely used for compactifications of heterotic string theories. Among the many constructions, that of complete intersection Calabi Yau manifolds (CICY) is generally regarded to be the simplest. Furthermore, CICY threefolds have been proven to exist only in finite number. In the following text CICY manifold
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Marseglia, Stéphane. "Variétés projectives convexes de volume fini." Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAD019/document.

Testo completo
Abstract (sommario):
Cette thèse est consacrée à l'étude des variétés projectives strictement convexes de volume fini. Une telle variété est le quotient G\U d'un ouvert proprement convexe U de l'espace projectif réel RP^(n-1) par un sous-groupe discret sans torsion G de SLn(R) qui préserve U. Dans un premier temps, on étudie l'adhérence de Zariski des holonomies de variétés projectives strictement convexes de volume fini. Pour une telle variété G\U, on montre que, soit G est Zariski-dense dans SLn(R), soit l'adhérence de Zariski de G est conjuguée à SO(1,n-1). On s'intéresse ensuite à l'espace des modules des stru
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Hung, Min Kai, and 洪旻楷. "On the finiteness of geometric knots." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/14407283257393717053.

Testo completo
Abstract (sommario):
碩士<br>國立臺灣師範大學<br>數學系<br>98<br>In these paper, we consider several properties of Normal Projection Energy. Firstly, among the class of $C^{1,1}$-smooth knots, the upper bound of Normal Projection Energy gives a uniform lower bound of Gromov's distorsion of knots. Secondly, Normal Projection Energy is bounded by the product of total curvature and ropelength. Thirdly, to prove the bound of Normal Projection Energy, we study the curves which attain the infimum of the total absolute curvature in the set of curves contained in a ball with fixed endpoints and length.
Gli stili APA, Harvard, Vancouver, ISO e altri
7

"Survey on the finiteness results in geometric analysis on complete manifolds." 2010. http://library.cuhk.edu.hk/record=b5894429.

Testo completo
Abstract (sommario):
Wu, Lijiang.<br>Thesis (M.Phil.)--Chinese University of Hong Kong, 2010.<br>Includes bibliographical references (leaves 102-105).<br>Abstracts in English and Chinese.<br>Chapter 0 --- Introduction --- p.6<br>Chapter 1 --- Background knowledge --- p.9<br>Chapter 1.1 --- Comparison theorems --- p.9<br>Chapter 1.2 --- Bochner techniques --- p.13<br>Chapter 1.3 --- Eigenvalue estimates for Laplacian operator --- p.14<br>Chapter 1.4 --- Spectral theory for Schrodinger operator on Rieman- nian manifolds --- p.16<br>Chapter 2 --- Vanishing theorems --- p.20<br>Chapter 2.1 --- Liouville type th
Gli stili APA, Harvard, Vancouver, ISO e altri

Libri sul tema "Geometric finiteness"

1

Marco, Rigoli, and Setti Alberto G. 1960-, eds. Vanishing and finiteness results in geometric analysis: A generalization of the Bochner technique. Birkhauser, 2008.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Session, Ring Theory. Ring theory and its applications: Ring Theory Session in honor of T.Y. Lam on his 70th birthday at the 31st Ohio State-Denison Mathematics Conference, May 25-27, 2012, The Ohio State University, Columbus, OH. Edited by Lam, T. Y. (Tsit-Yuen), 1942- honouree, Huynh, Dinh Van, 1947- editor of compilation, and Ohio State-Denison Mathematics Conference. American Mathematical Society, 2014.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Vanishing and Finiteness Results in Geometric Analysis. Birkhäuser Basel, 2008. http://dx.doi.org/10.1007/978-3-7643-8642-9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Pigola, Stefano, Marco Rigoli, and Alberto G. Setti. Vanishing and Finiteness Results in Geometric Analysis: A Generalization of the Bochner Technique. Springer London, Limited, 2008.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Witzel, Stefan. Finiteness Properties of Arithmetic Groups Acting on Twin Buildings. Springer London, Limited, 2014.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Finiteness Properties of Arithmetic Groups Acting on Twin Buildings. Springer, 2014.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Hrushovski, Ehud, and François Loeser. Non-Archimedean Tame Topology and Stably Dominated Types (AM-192). Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691161686.001.0001.

Testo completo
Abstract (sommario):
Over the field of real numbers, analytic geometry has long been in deep interaction with algebraic geometry, bringing the latter subject many of its topological insights. In recent decades, model theory has joined this work through the theory of o-minimality, providing finiteness and uniformity statements and new structural tools. For non-archimedean fields, such as the p-adics, the Berkovich analytification provides a connected topology with many thoroughgoing analogies to the real topology on the set of complex points, and it has become an important tool in algebraic dynamics and many other
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Abbes, Ahmed, and Michel Gros. Representations of the fundamental group and the torsor of deformations. Global aspects. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691170282.003.0003.

Testo completo
Abstract (sommario):
This chapter continues the construction and study of the p-adic Simpson correspondence and presents the global aspects of the theory of representations of the fundamental group and the torsor of deformations. After fixing the notation and general conventions, the chapter develops preliminaries and then introduces the results and complements on the notion of locally irreducible schemes. It also fixes the logarithmic geometry setting of the constructions and considers a number of results on the Koszul complex. Finally, it develops the formalism of additive categories up to isogeny and describes
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Rings with Polynomial Identities and Finite Dimensional Representations of Algebras. American Mathematical Society, 2020.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Capitoli di libri sul tema "Geometric finiteness"

1

Katz, Nicholas M., Serge Lang, and Kenneth A. Ribet. "Finiteness Theorems in Geometric Classfield Theory." In Collected Papers Volume III. Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-2116-6_9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Lang, Serge. "Finiteness Theorems in Geometric Classfield Theory." In Springer Collected Works in Mathematics. Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4614-6324-5_9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Suciu, Alexander I. "Geometric and homological finiteness in free abelian covers." In Configuration Spaces. Scuola Normale Superiore, 2012. http://dx.doi.org/10.1007/978-88-7642-431-1_21.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Andrzejewski, Pawel. "Equivariant finiteness obstruction and its geometric applications - A survey." In Lecture Notes in Mathematics. Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/bfb0084735.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Schlomiuk, Dana. "Aspects of planar polynomial vector fields: global versus local, real versus complex, analytic versus algebraic and geometric." In Normal Forms, Bifurcations and Finiteness Problems in Differential Equations. Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-94-007-1025-2_13.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Görtz, Ulrich, and Torsten Wedhorn. "Finiteness Conditions." In Algebraic Geometry I. Vieweg+Teubner, 2010. http://dx.doi.org/10.1007/978-3-8348-9722-0_11.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Faltings, Gerd. "Finiteness Theorems for Abelian Varieties over Number Fields." In Arithmetic Geometry. Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4613-8655-1_2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Zarhin, Yuri G. "Finiteness theorems for dimensions of irreducible λ-adic representations." In Arithmetic Algebraic Geometry. Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4612-0457-2_20.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Besson, Gérard, and Gilles Courtois. "Compactness and Finiteness Results for Gromov-Hyperbolic Spaces." In Surveys in Geometry I. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-86695-2_6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Ollivier, François. "Canonical Bases: Relations with Standard Bases, Finiteness Conditions and Application to Tame Automorphisms." In Effective Methods in Algebraic Geometry. Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4612-0441-1_25.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Atti di convegni sul tema "Geometric finiteness"

1

Koike, Satoshi. "Finiteness theorems on Blow-Nash triviality for real algebraic singularities." In Geometric Singularity Theory. Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc65-0-10.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Bejan, Adrian, and Sylvie Lorente. "A Course on Flow-System Configuration and Multi-Scale Design." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59203.

Testo completo
Abstract (sommario):
This paper brings to the attention of the AES community our experience with developing and trying out a new course that focuses on the generation of system configuration (geometry, architecture, and drawing) during the optimization of performance. The configuration is free to morph. Real systems are destined to remain imperfect because of finiteness constraints. They are plagued by resistances to the flow of fluid, heat, and electricity. Resistances are always finite because of constraints. The balancing and distributing of resistances (irreversibility) through the available volume is the mech
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Martinez, Rudolph, Brent S. Paul, Morgan Eash, and Carina Ting. "A Three-Dimensional Wiener-Hopf Technique for General Bodies of Revolution: Part 1—Theory." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-13344.

Testo completo
Abstract (sommario):
This work, the first of two parts, presents the development of a new analytic solution of acoustic scattering and/or radiation by arbitrary bodies of revolution under heavy fluid loading. The approach followed is the construction of a three-dimensional Wiener-Hopf technique with Fourier transforms that operate on the finite object’s arclength variable (the object’s practical finiteness comes about, in a Wiener-Hopf sense, by formally bringing to zero the radius of its semi-infinite generator curve for points beyond a prescribed station). Unlike in the classical case of a planar semi-infinite g
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!